import sys import json from hugchat import hugchat from hugchat.login import Login import os import re import torch from transformers import pipeline import librosa # HugChat login credentials from environment variables (secrets) EMAIL = os.environ.get("EMAIL") PASSWD = os.environ.get("PASSWORD") # Directory to store cookies cookie_path_dir = "./cookies/" os.makedirs(cookie_path_dir, exist_ok=True) # Login to HugChat sign = Login(EMAIL, PASSWD) cookies = sign.login(cookie_dir_path=cookie_path_dir, save_cookies=True) chatbot = hugchat.ChatBot(cookies=cookies.get_dict()) # Model and device configuration for Whisper transcription MODEL_NAME = "openai/whisper-large-v3-turbo" device = 0 if torch.cuda.is_available() else "cpu" # Initialize Whisper pipeline pipe = pipeline( task="automatic-speech-recognition", model=MODEL_NAME, chunk_length_s=30, device=device, ) def transcribe_audio(audio_path): """ Transcribe a local audio file using the Whisper pipeline. """ try: # Ensure audio is mono and resampled to 16kHz audio, sr = librosa.load(audio_path, sr=16000, mono=True) # Perform transcription transcription = pipe(audio, batch_size=8, generate_kwargs={"language": "urdu"})["text"] return transcription except Exception as e: return f"Error processing audio: {e}" # Get command-line arguments: audio file path and file name audio_path = sys.argv[1] # Path to the audio file file_name = sys.argv[2] # File name for metadata # Transcribe the audio to get Urdu text urdu_text = transcribe_audio(audio_path) if "Error" in urdu_text: print(json.dumps({"error": urdu_text})) sys.exit(1) def extract_metadata(file_name): """ Extract metadata from the file name. Assumes the second-last chunk is the city, e.g., 'agent2_5_Multan_Pakistan.mp3' -> location = 'Multan'. Args: file_name (str): The name of the audio file. Returns: dict: Contains agent_username and location. """ base = file_name.split(".")[0] # Remove extension parts = base.split("_") if len(parts) >= 3: return { "agent_username": parts[0], "location": parts[-2] # Second-last chunk } return {"agent_username": "Unknown", "location": "Unknown"} # Extract metadata from file name metadata = extract_metadata(file_name) location = metadata["location"] # Step 1: Translate Urdu to English with context-aware correction english_text = chatbot.chat( f"The following Urdu text is about crops and their diseases, but it may contain errors or misheard words due to audio transcription issues. Please use context to infer the most likely correct crop names and disease terms, and then translate the text to English:\n\n{urdu_text}" ).wait_until_done() # Step 2: Extract specific crops and diseases from the English text extraction_prompt = f""" Below is an English text about specific crops and possible diseases/pests: {english_text} Identify each specific Crop (like wheat, rice, cotton, etc.) mentioned and list any Diseases or Pests affecting that crop. - If a disease or pest is mentioned without specifying a particular crop, list it under "No crop:". - If a crop is mentioned but no diseases or pests are specified for it, include it with an empty diseases list. - Do not include general terms like "crops" as a specific crop name. Format your answer in this style (one entry at a time): For specific crops with diseases: 1. CropName: Diseases: - DiseaseName - AnotherDisease For specific crops with no diseases: 2. NextCrop: Diseases: For standalone diseases: 3. No crop: Diseases: - StandaloneDisease No extra text, just the structured bullet list. """ extraction_response = chatbot.chat(extraction_prompt).wait_until_done() # Step 3: Parse the extraction response lines = extraction_response.splitlines() crops_and_diseases = [] current_crop = None current_diseases = [] for line in lines: line = line.strip() if not line: continue # Match lines like "1. Wheat:" or "3. No crop:" match_crop = re.match(r'^(\d+)\.\s*(.+?):$', line) if match_crop: # Save previous crop and diseases if any if current_crop is not None or current_diseases: crops_and_diseases.append({ "crop": current_crop, "diseases": current_diseases }) # Process new crop crop_name = match_crop.group(2).strip() # Handle general terms as "No crop" if crop_name.lower() in ["no crop", "crops", "general crops"]: current_crop = None # Standalone diseases else: current_crop = crop_name current_diseases = [] continue # Skip "Diseases:" line if line.lower().startswith("diseases:"): continue # Add disease if line starts with '-' if line.startswith('-'): disease_name = line.lstrip('-').strip() if disease_name: current_diseases.append(disease_name) # Append the last crop/diseases if present if current_crop is not None or current_diseases: crops_and_diseases.append({ "crop": current_crop, "diseases": current_diseases }) # Step 4: Get temperature for the location temp_prompt = f"Give me weather of {location} in Celsius numeric only." temperature_response = chatbot.chat(temp_prompt).wait_until_done() # Parse temperature (extract first number found) temperature = None temp_match = re.search(r'(\d+)', temperature_response) if temp_match: temperature = int(temp_match.group(1)) # Step 5: Build and output the final JSON output = { "urdu_text": urdu_text, "english_text": english_text, "crops_and_diseases": crops_and_diseases, "temperature": temperature, "location": location } print(json.dumps(output))