Update app.py
Browse files
app.py
CHANGED
@@ -1,47 +1,17 @@
|
|
1 |
-
import sys
|
2 |
-
import json
|
3 |
-
from hugchat import hugchat
|
4 |
-
from hugchat.login import Login
|
5 |
-
import os
|
6 |
-
import re
|
7 |
import torch
|
8 |
from transformers import pipeline
|
9 |
import librosa
|
|
|
|
|
|
|
|
|
10 |
import gradio as gr
|
11 |
|
12 |
-
#
|
13 |
-
cookie_path_dir = "./cookies/"
|
14 |
-
cookie_file_path = os.path.join(cookie_path_dir, "cookies_snapshot.json") # Default file name used by hugchat
|
15 |
-
|
16 |
-
# Load pre-saved cookies
|
17 |
-
try:
|
18 |
-
print("Attempting to load cookies from:", cookie_file_path)
|
19 |
-
if not os.path.exists(cookie_file_path):
|
20 |
-
# If cookies don't exist, attempt to generate them (for local testing; remove in Spaces)
|
21 |
-
EMAIL = os.environ.get("EMAIL", "[email protected]") # Fallback for local testing
|
22 |
-
PASSWD = os.environ.get("PASSWORD", "e.AKsv$3Q4i4KcX") # Fallback for local testing
|
23 |
-
os.makedirs(cookie_path_dir, exist_ok=True)
|
24 |
-
sign = Login(EMAIL, PASSWD)
|
25 |
-
cookies = sign.login(cookie_dir_path=cookie_path_dir, save_cookies=True)
|
26 |
-
print("Generated new cookies since none were found.")
|
27 |
-
else:
|
28 |
-
# Load existing cookies
|
29 |
-
with open(cookie_file_path, "r") as f:
|
30 |
-
cookies = json.load(f) # Load the cookie dictionary
|
31 |
-
print("Cookies loaded from file.")
|
32 |
-
|
33 |
-
chatbot = hugchat.ChatBot(cookies=cookies) # Pass cookies directly
|
34 |
-
print("ChatBot initialized successfully.")
|
35 |
-
except Exception as e:
|
36 |
-
print(f"Failed to initialize ChatBot: {str(e)}")
|
37 |
-
import traceback
|
38 |
-
traceback.print_exc()
|
39 |
-
sys.exit(1)
|
40 |
-
|
41 |
-
# Model and device configuration for Whisper transcription
|
42 |
MODEL_NAME = "openai/whisper-large-v3-turbo"
|
43 |
device = 0 if torch.cuda.is_available() else "cpu"
|
44 |
|
|
|
45 |
pipe = pipeline(
|
46 |
task="automatic-speech-recognition",
|
47 |
model=MODEL_NAME,
|
@@ -49,139 +19,122 @@ pipe = pipeline(
|
|
49 |
device=device,
|
50 |
)
|
51 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
52 |
def transcribe_audio(audio_path):
|
|
|
|
|
|
|
53 |
try:
|
54 |
-
|
55 |
-
|
56 |
-
return transcription
|
57 |
-
except Exception as e:
|
58 |
-
return f"Error processing audio: {e}"
|
59 |
-
|
60 |
-
def extract_metadata(file_name):
|
61 |
-
base = file_name.split(".")[0]
|
62 |
-
parts = base.split("_")
|
63 |
-
if len(parts) >= 3:
|
64 |
-
return {
|
65 |
-
"agent_username": parts[0],
|
66 |
-
"location": parts[-2]
|
67 |
-
}
|
68 |
-
return {"agent_username": "Unknown", "location": "Unknown"}
|
69 |
|
70 |
-
|
71 |
-
|
72 |
-
if "Error" in urdu_text:
|
73 |
-
return json.dumps({"error": urdu_text})
|
74 |
-
|
75 |
-
metadata = extract_metadata(file_name)
|
76 |
-
location = metadata["location"]
|
77 |
|
78 |
-
|
79 |
-
|
80 |
-
).wait_until_done()
|
81 |
|
82 |
-
|
83 |
-
|
84 |
|
85 |
-
|
86 |
|
87 |
-
|
|
|
88 |
|
89 |
-
|
90 |
-
|
91 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
92 |
|
93 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
94 |
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
|
|
|
|
100 |
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
|
105 |
-
|
106 |
-
|
107 |
-
Diseases:
|
108 |
-
- StandaloneDisease
|
109 |
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
continue
|
123 |
-
match_crop = re.match(r'^(\d+)\.\s*(.+?):$', line)
|
124 |
-
if match_crop:
|
125 |
-
if current_crop is not None or current_diseases:
|
126 |
-
crops_and_diseases.append({
|
127 |
-
"crop": current_crop,
|
128 |
-
"diseases": current_diseases
|
129 |
-
})
|
130 |
-
crop_name = match_crop.group(2).strip()
|
131 |
-
if crop_name.lower() in ["no crop", "crops", "general crops"]:
|
132 |
-
current_crop = None
|
133 |
-
else:
|
134 |
-
current_crop = crop_name
|
135 |
-
current_diseases = []
|
136 |
-
continue
|
137 |
-
if line.lower().startswith("diseases:"):
|
138 |
-
continue
|
139 |
-
if line.startswith('-'):
|
140 |
-
disease_name = line.lstrip('-').strip()
|
141 |
-
if disease_name:
|
142 |
-
current_diseases.append(disease_name)
|
143 |
-
|
144 |
-
if current_crop is not None or current_diseases:
|
145 |
-
crops_and_diseases.append({
|
146 |
-
"crop": current_crop,
|
147 |
-
"diseases": current_diseases
|
148 |
-
})
|
149 |
-
|
150 |
-
temp_prompt = f"Give me weather of {location} in Celsius numeric only."
|
151 |
-
temperature_response = chatbot.chat(temp_prompt).wait_until_done()
|
152 |
-
|
153 |
-
temperature = None
|
154 |
-
temp_match = re.search(r'(\d+)', temperature_response)
|
155 |
-
if temp_match:
|
156 |
-
temperature = int(temp_match.group(1))
|
157 |
-
|
158 |
-
output = {
|
159 |
-
"urdu_text": urdu_text,
|
160 |
-
"english_text": english_text,
|
161 |
-
"crops_and_diseases": crops_and_diseases,
|
162 |
-
"temperature": temperature,
|
163 |
-
"location": location
|
164 |
-
}
|
165 |
-
|
166 |
-
return json.dumps(output)
|
167 |
-
|
168 |
-
with gr.Blocks(title="Audio to Crop Disease API") as interface:
|
169 |
-
gr.Markdown("## Upload Audio to Get Urdu Transcription, English Translation, and Crop Diseases")
|
170 |
|
171 |
with gr.Row():
|
172 |
-
|
173 |
-
|
174 |
|
175 |
with gr.Row():
|
176 |
-
|
177 |
|
178 |
process_button = gr.Button("Process Audio")
|
179 |
|
180 |
process_button.click(
|
181 |
-
fn=
|
182 |
-
inputs=[audio_input,
|
183 |
-
outputs=[
|
184 |
)
|
185 |
|
186 |
if __name__ == "__main__":
|
187 |
-
interface.launch()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import torch
|
2 |
from transformers import pipeline
|
3 |
import librosa
|
4 |
+
from datetime import datetime
|
5 |
+
from deep_translator import GoogleTranslator
|
6 |
+
from typing import Dict, Union
|
7 |
+
from gliner import GLiNER
|
8 |
import gradio as gr
|
9 |
|
10 |
+
# Model and device configuration for transcription
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
11 |
MODEL_NAME = "openai/whisper-large-v3-turbo"
|
12 |
device = 0 if torch.cuda.is_available() else "cpu"
|
13 |
|
14 |
+
# Initialize Whisper pipeline
|
15 |
pipe = pipeline(
|
16 |
task="automatic-speech-recognition",
|
17 |
model=MODEL_NAME,
|
|
|
19 |
device=device,
|
20 |
)
|
21 |
|
22 |
+
# Initialize GLiNER for information extraction
|
23 |
+
gliner_model = GLiNER.from_pretrained("xomad/gliner-model-merge-large-v1.0").to("cpu")
|
24 |
+
|
25 |
+
def merge_entities(entities):
|
26 |
+
if not entities:
|
27 |
+
return []
|
28 |
+
merged = []
|
29 |
+
current = entities[0]
|
30 |
+
for next_entity in entities[1:]:
|
31 |
+
if next_entity['entity'] == current['entity'] and (next_entity['start'] == current['end'] + 1 or next_entity['start'] == current['end']):
|
32 |
+
current['word'] += ' ' + next_entity['word']
|
33 |
+
current['end'] = next_entity['end']
|
34 |
+
else:
|
35 |
+
merged.append(current)
|
36 |
+
current = next_entity
|
37 |
+
merged.append(current)
|
38 |
+
return merged
|
39 |
+
|
40 |
def transcribe_audio(audio_path):
|
41 |
+
"""
|
42 |
+
Transcribe a local audio file using the Whisper pipeline, log timing, and save transcription to a file.
|
43 |
+
"""
|
44 |
try:
|
45 |
+
# Log start time
|
46 |
+
start_time = datetime.now()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
47 |
|
48 |
+
# Ensure audio is mono and resampled to 16kHz
|
49 |
+
audio, sr = librosa.load(audio_path, sr=16000, mono=True)
|
|
|
|
|
|
|
|
|
|
|
50 |
|
51 |
+
# Perform transcription
|
52 |
+
transcription = pipe(audio, batch_size=8, generate_kwargs={"language": "urdu"})["text"]
|
|
|
53 |
|
54 |
+
# Log end time
|
55 |
+
end_time = datetime.now()
|
56 |
|
57 |
+
return transcription
|
58 |
|
59 |
+
except Exception as e:
|
60 |
+
return f"Error processing audio: {e}"
|
61 |
|
62 |
+
def translate_text_to_english(text):
|
63 |
+
"""
|
64 |
+
Translate text into English using GoogleTranslator.
|
65 |
+
"""
|
66 |
+
try:
|
67 |
+
# Perform translation
|
68 |
+
translated_text = GoogleTranslator(source='auto', target='en').translate(text)
|
69 |
+
return translated_text
|
70 |
+
except Exception as e:
|
71 |
+
return f"Error during translation: {e}"
|
72 |
|
73 |
+
def extract_information(prompt: str, text: str, threshold: float, nested_ner: bool) -> Dict[str, Union[str, int, float]]:
|
74 |
+
"""
|
75 |
+
Extract entities from the English text using GLiNER model.
|
76 |
+
"""
|
77 |
+
try:
|
78 |
+
text = prompt + "\n" + text
|
79 |
+
entities = [
|
80 |
+
{
|
81 |
+
"entity": entity["label"],
|
82 |
+
"word": entity["text"],
|
83 |
+
"start": entity["start"],
|
84 |
+
"end": entity["end"],
|
85 |
+
"score": 0,
|
86 |
+
}
|
87 |
+
for entity in gliner_model.predict_entities(
|
88 |
+
text, ["match"], flat_ner=not nested_ner, threshold=threshold
|
89 |
+
)
|
90 |
+
]
|
91 |
+
merged_entities = merge_entities(entities)
|
92 |
+
return {"text": text, "entities": merged_entities}
|
93 |
+
except Exception as e:
|
94 |
+
return {"error": f"Information extraction failed: {e}"}
|
95 |
|
96 |
+
def pipeline_fn(audio, prompt, threshold, nested_ner):
|
97 |
+
"""
|
98 |
+
Combine transcription, translation, and information extraction in a single pipeline.
|
99 |
+
"""
|
100 |
+
transcription = transcribe_audio(audio)
|
101 |
+
if "Error" in transcription:
|
102 |
+
return transcription, "", "", {}
|
103 |
|
104 |
+
translated_text = translate_text_to_english(transcription)
|
105 |
+
if "Error" in translated_text:
|
106 |
+
return transcription, translated_text, "", {}
|
107 |
|
108 |
+
info_extraction = extract_information(prompt, translated_text, threshold, nested_ner)
|
109 |
+
return transcription, translated_text, info_extraction
|
|
|
|
|
110 |
|
111 |
+
# Gradio Interface
|
112 |
+
with gr.Blocks(title="Audio Processing and Information Extraction") as interface:
|
113 |
+
gr.Markdown("## Audio Transcription, Translation, and Information Extraction")
|
114 |
+
|
115 |
+
with gr.Row():
|
116 |
+
# Fixed: removed 'source' argument from gr.Audio
|
117 |
+
audio_input = gr.Audio(type="filepath", label="Upload Audio File")
|
118 |
+
prompt_input = gr.Textbox(label="Prompt for Information Extraction", placeholder="Enter your prompt here")
|
119 |
+
|
120 |
+
with gr.Row():
|
121 |
+
threshold_slider = gr.Slider(0, 1, value=0.3, step=0.01, label="NER Threshold")
|
122 |
+
nested_ner_checkbox = gr.Checkbox(label="Enable Nested NER")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
123 |
|
124 |
with gr.Row():
|
125 |
+
transcription_output = gr.Textbox(label="Transcription (Urdu)", interactive=False) # Corrected to interactive=False
|
126 |
+
translation_output = gr.Textbox(label="Translation (English)", interactive=False) # Corrected to interactive=False
|
127 |
|
128 |
with gr.Row():
|
129 |
+
extraction_output = gr.HighlightedText(label="Extracted Information")
|
130 |
|
131 |
process_button = gr.Button("Process Audio")
|
132 |
|
133 |
process_button.click(
|
134 |
+
fn=pipeline_fn,
|
135 |
+
inputs=[audio_input, prompt_input, threshold_slider, nested_ner_checkbox],
|
136 |
+
outputs=[transcription_output, translation_output, extraction_output],
|
137 |
)
|
138 |
|
139 |
if __name__ == "__main__":
|
140 |
+
interface.launch()
|