Spaces:
Build error
Build error
File size: 30,578 Bytes
639aec2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 |
# -*- coding: utf-8 -*-
"""Good.ipynb
Automatically generated by Colaboratory.
Original file is located at
https://colab.research.google.com/drive/1AkM6wLyspo4q2ScK_pIkTAFDV-Q-JCgh
"""
!pip install torchinfo
files.upload()
from google.colab import files
import matplotlib.pyplot as plt
import torch
import torchvision
from torch import nn
from torchvision import transforms
from Helperfunction import set_seeds
device = "cuda" if torch.cuda.is_available() else "cpu"
device
# Commented out IPython magic to ensure Python compatibility.
# %%writefile predict.py
#
# #predict
#
#
# """
# Utility functions to make predictions.
#
# Main reference for code creation: https://www.learnpytorch.io/06_pytorch_transfer_learning/#6-make-predictions-on-images-from-the-test-set
# """
# import torch
# import torchvision
# from torchvision import transforms
# import matplotlib.pyplot as plt
#
# from typing import List, Tuple
#
# from PIL import Image
#
# # Set device
# device = "cuda" if torch.cuda.is_available() else "cpu"
#
# # Predict on a target image with a target model
# # Function created in: https://www.learnpytorch.io/06_pytorch_transfer_learning/#6-make-predictions-on-images-from-the-test-set
# def pred_and_plot_image(
# model: torch.nn.Module,
# class_names: List[str],
# image_path: str,
# image_size: Tuple[int, int] = (224, 224),
# transform: torchvision.transforms = None,
# device: torch.device = device,
# ):
# """Predicts on a target image with a target model.
#
# Args:
# model (torch.nn.Module): A trained (or untrained) PyTorch model to predict on an image.
# class_names (List[str]): A list of target classes to map predictions to.
# image_path (str): Filepath to target image to predict on.
# image_size (Tuple[int, int], optional): Size to transform target image to. Defaults to (224, 224).
# transform (torchvision.transforms, optional): Transform to perform on image. Defaults to None which uses ImageNet normalization.
# device (torch.device, optional): Target device to perform prediction on. Defaults to device.
# """
#
# # Open image
# img = Image.open(image_path)
#
# # Create transformation for image (if one doesn't exist)
# if transform is not None:
# image_transform = transform
# else:
# image_transform = transforms.Compose(
# [
# transforms.Resize(image_size),
# transforms.ToTensor(),
# transforms.Normalize(
# mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]
# ),
# ]
# )
#
# ### Predict on image ###
#
# # Make sure the model is on the target device
# model.to(device)
#
# # Turn on model evaluation mode and inference mode
# model.eval()
# with torch.inference_mode():
# # Transform and add an extra dimension to image (model requires samples in [batch_size, color_channels, height, width])
# transformed_image = image_transform(img).unsqueeze(dim=0)
#
# # Make a prediction on image with an extra dimension and send it to the target device
# target_image_pred = model(transformed_image.to(device))
#
# # Convert logits -> prediction probabilities (using torch.softmax() for multi-class classification)
# target_image_pred_probs = torch.softmax(target_image_pred, dim=1)
#
# # Convert prediction probabilities -> prediction labels
# target_image_pred_label = torch.argmax(target_image_pred_probs, dim=1)
#
# # Plot image with predicted label and probability
# plt.figure()
# plt.imshow(img)
# plt.title(
# f"Pred: {class_names[target_image_pred_label]} | Prob: {target_image_pred_probs.max():.3f}"
# )
# plt.axis(False)
#
from google.colab import drive
drive.mount('/content/drive')
# Commented out IPython magic to ensure Python compatibility.
# %%writefile model_builder.py
#
# #model_builder
#
# """
# Contains PyTorch model code to instantiate a TinyVGG model.
# """
# import torch
# from torch import nn
#
# class TinyVGG(nn.Module):
# """Creates the TinyVGG architecture.
#
# Replicates the TinyVGG architecture from the CNN explainer website in PyTorch.
# See the original architecture here: https://poloclub.github.io/cnn-explainer/
#
# Args:
# input_shape: An integer indicating number of input channels.
# hidden_units: An integer indicating number of hidden units between layers.
# output_shape: An integer indicating number of output units.
# """
# def __init__(self, input_shape: int, hidden_units: int, output_shape: int) -> None:
# super().__init__()
# self.conv_block_1 = nn.Sequential(
# nn.Conv2d(in_channels=input_shape,
# out_channels=hidden_units,
# kernel_size=3,
# stride=1,
# padding=0),
# nn.ReLU(),
# nn.Conv2d(in_channels=hidden_units,
# out_channels=hidden_units,
# kernel_size=3,
# stride=1,
# padding=0),
# nn.ReLU(),
# nn.MaxPool2d(kernel_size=2,
# stride=2)
# )
# self.conv_block_2 = nn.Sequential(
# nn.Conv2d(hidden_units, hidden_units, kernel_size=3, padding=0),
# nn.ReLU(),
# nn.Conv2d(hidden_units, hidden_units, kernel_size=3, padding=0),
# nn.ReLU(),
# nn.MaxPool2d(2)
# )
# self.classifier = nn.Sequential(
# nn.Flatten(),
# # Where did this in_features shape come from?
# # It's because each layer of our network compresses and changes the shape of our inputs data.
# nn.Linear(in_features=hidden_units*13*13,
# out_features=output_shape)
# )
#
# def forward(self, x: torch.Tensor):
# x = self.conv_block_1(x)
# x = self.conv_block_2(x)
# x = self.classifier(x)
# return x
# # return self.classifier(self.block_2(self.block_1(x))) # <- leverage the benefits of operator fusion
# Commented out IPython magic to ensure Python compatibility.
# %%writefile utils.py
#
# #utils.py
#
# """
# Contains various utility functions for PyTorch model training and saving.
# """
# import torch
# from pathlib import Path
#
# def save_model(model: torch.nn.Module,
# target_dir: str,
# model_name: str):
# """Saves a PyTorch model to a target directory.
#
# Args:
# model: A target PyTorch model to save.
# target_dir: A directory for saving the model to.
# model_name: A filename for the saved model. Should include
# either ".pth" or ".pt" as the file extension.
#
# Example usage:
# save_model(model=model_0,
# target_dir="models",
# model_name="05_going_modular_tingvgg_model.pth")
# """
# # Create target directory
# target_dir_path = Path(target_dir)
# target_dir_path.mkdir(parents=True,
# exist_ok=True)
#
# # Create model save path
# assert model_name.endswith(".pth") or model_name.endswith(".pt"), "model_name should end with '.pt' or '.pth'"
# model_save_path = target_dir_path / model_name
#
# # Save the model state_dict()
# print(f"[INFO] Saving model to: {model_save_path}")
# torch.save(obj=model.state_dict(),
# f=model_save_path)
# Commented out IPython magic to ensure Python compatibility.
# %%writefile engine.py
# #engine.py
#
# """
# Contains functions for training and testing a PyTorch model.
# """
# import torch
#
# from tqdm.auto import tqdm
# from typing import Dict, List, Tuple
#
# def train_step(model: torch.nn.Module,
# dataloader: torch.utils.data.DataLoader,
# loss_fn: torch.nn.Module,
# optimizer: torch.optim.Optimizer,
# device: torch.device) -> Tuple[float, float]:
# """Trains a PyTorch model for a single epoch.
#
# Turns a target PyTorch model to training mode and then
# runs through all of the required training steps (forward
# pass, loss calculation, optimizer step).
#
# Args:
# model: A PyTorch model to be trained.
# dataloader: A DataLoader instance for the model to be trained on.
# loss_fn: A PyTorch loss function to minimize.
# optimizer: A PyTorch optimizer to help minimize the loss function.
# device: A target device to compute on (e.g. "cuda" or "cpu").
#
# Returns:
# A tuple of training loss and training accuracy metrics.
# In the form (train_loss, train_accuracy). For example:
#
# (0.1112, 0.8743)
# """
# # Put model in train mode
# model.train()
#
# # Setup train loss and train accuracy values
# train_loss, train_acc = 0, 0
#
# # Loop through data loader data batches
# for batch, (X, y) in enumerate(dataloader):
# # Send data to target device
# X, y = X.to(device), y.to(device)
#
# # 1. Forward pass
# y_pred = model(X)
#
# # 2. Calculate and accumulate loss
# loss = loss_fn(y_pred, y)
# train_loss += loss.item()
#
# # 3. Optimizer zero grad
# optimizer.zero_grad()
#
# # 4. Loss backward
# loss.backward()
#
# # 5. Optimizer step
# optimizer.step()
#
# # Calculate and accumulate accuracy metric across all batches
# y_pred_class = torch.argmax(torch.softmax(y_pred, dim=1), dim=1)
# train_acc += (y_pred_class == y).sum().item()/len(y_pred)
#
# # Adjust metrics to get average loss and accuracy per batch
# train_loss = train_loss / len(dataloader)
# train_acc = train_acc / len(dataloader)
# return train_loss, train_acc
#
# def test_step(model: torch.nn.Module,
# dataloader: torch.utils.data.DataLoader,
# loss_fn: torch.nn.Module,
# device: torch.device) -> Tuple[float, float]:
# """Tests a PyTorch model for a single epoch.
#
# Turns a target PyTorch model to "eval" mode and then performs
# a forward pass on a testing dataset.
#
# Args:
# model: A PyTorch model to be tested.
# dataloader: A DataLoader instance for the model to be tested on.
# loss_fn: A PyTorch loss function to calculate loss on the test data.
# device: A target device to compute on (e.g. "cuda" or "cpu").
#
# Returns:
# A tuple of testing loss and testing accuracy metrics.
# In the form (test_loss, test_accuracy). For example:
#
# (0.0223, 0.8985)
# """
# # Put model in eval mode
# model.eval()
#
# # Setup test loss and test accuracy values
# test_loss, test_acc = 0, 0
#
# # Turn on inference context manager
# with torch.inference_mode():
# # Loop through DataLoader batches
# for batch, (X, y) in enumerate(dataloader):
# # Send data to target device
# X, y = X.to(device), y.to(device)
#
# # 1. Forward pass
# test_pred_logits = model(X)
#
# # 2. Calculate and accumulate loss
# loss = loss_fn(test_pred_logits, y)
# test_loss += loss.item()
#
# # Calculate and accumulate accuracy
# test_pred_labels = test_pred_logits.argmax(dim=1)
# test_acc += ((test_pred_labels == y).sum().item()/len(test_pred_labels))
#
# # Adjust metrics to get average loss and accuracy per batch
# test_loss = test_loss / len(dataloader)
# test_acc = test_acc / len(dataloader)
# return test_loss, test_acc
#
# def train(model: torch.nn.Module,
# train_dataloader: torch.utils.data.DataLoader,
# test_dataloader: torch.utils.data.DataLoader,
# optimizer: torch.optim.Optimizer,
# loss_fn: torch.nn.Module,
# epochs: int,
# device: torch.device) -> Dict[str, List]:
# """Trains and tests a PyTorch model.
#
# Passes a target PyTorch models through train_step() and test_step()
# functions for a number of epochs, training and testing the model
# in the same epoch loop.
#
# Calculates, prints and stores evaluation metrics throughout.
#
# Args:
# model: A PyTorch model to be trained and tested.
# train_dataloader: A DataLoader instance for the model to be trained on.
# test_dataloader: A DataLoader instance for the model to be tested on.
# optimizer: A PyTorch optimizer to help minimize the loss function.
# loss_fn: A PyTorch loss function to calculate loss on both datasets.
# epochs: An integer indicating how many epochs to train for.
# device: A target device to compute on (e.g. "cuda" or "cpu").
#
# Returns:
# A dictionary of training and testing loss as well as training and
# testing accuracy metrics. Each metric has a value in a list for
# each epoch.
# In the form: {train_loss: [...],
# train_acc: [...],
# test_loss: [...],
# test_acc: [...]}
# For example if training for epochs=2:
# {train_loss: [2.0616, 1.0537],
# train_acc: [0.3945, 0.3945],
# test_loss: [1.2641, 1.5706],
# test_acc: [0.3400, 0.2973]}
# """
# # Create empty results dictionary
# results = {"train_loss": [],
# "train_acc": [],
# "test_loss": [],
# "test_acc": []
# }
#
# # Make sure model on target device
# model.to(device)
#
# # Loop through training and testing steps for a number of epochs
# for epoch in tqdm(range(epochs)):
# train_loss, train_acc = train_step(model=model,
# dataloader=train_dataloader,
# loss_fn=loss_fn,
# optimizer=optimizer,
# device=device)
# test_loss, test_acc = test_step(model=model,
# dataloader=test_dataloader,
# loss_fn=loss_fn,
# device=device)
#
# # Print out what's happening
# print(
# f"Epoch: {epoch+1} | "
# f"train_loss: {train_loss:.4f} | "
# f"train_acc: {train_acc:.4f} | "
# f"test_loss: {test_loss:.4f} | "
# f"test_acc: {test_acc:.4f}"
# )
#
# # Update results dictionary
# results["train_loss"].append(train_loss)
# results["train_acc"].append(train_acc)
# results["test_loss"].append(test_loss)
# results["test_acc"].append(test_acc)
#
# # Return the filled results at the end of the epochs
# return results
# Commented out IPython magic to ensure Python compatibility.
# %%writefile data_setup.py
# #data_setup.py
# """
# Contains functionality for creating PyTorch DataLoaders for
# image classification data.
# """
# import os
#
# from torchvision import datasets, transforms
# from torch.utils.data import DataLoader
#
# NUM_WORKERS = os.cpu_count()
#
# def create_dataloaders(
# train_dir: str,
# test_dir: str,
# transform: transforms.Compose,
# batch_size: int,
# num_workers: int=NUM_WORKERS
# ):
# """Creates training and testing DataLoaders.
#
# Takes in a training directory and testing directory path and turns
# them into PyTorch Datasets and then into PyTorch DataLoaders.
#
# Args:
# train_dir: Path to training directory.
# test_dir: Path to testing directory.
# transform: torchvision transforms to perform on training and testing data.
# batch_size: Number of samples per batch in each of the DataLoaders.
# num_workers: An integer for number of workers per DataLoader.
#
# Returns:
# A tuple of (train_dataloader, test_dataloader, class_names).
# Where class_names is a list of the target classes.
# Example usage:
# train_dataloader, test_dataloader, class_names = \
# = create_dataloaders(train_dir=path/to/train_dir,
# test_dir=path/to/test_dir,
# transform=some_transform,
# batch_size=32,
# num_workers=4)
# """
# # Use ImageFolder to create dataset(s)
# train_data = datasets.ImageFolder(train_dir, transform=transform)
# test_data = datasets.ImageFolder(test_dir, transform=transform)
#
# # Get class names
# class_names = train_data.classes
#
# # Turn images into data loaders
# train_dataloader = DataLoader(
# train_data,
# batch_size=batch_size,
# shuffle=True,
# num_workers=num_workers,
# pin_memory=True,
# )
# test_dataloader = DataLoader(
# test_data,
# batch_size=batch_size,
# shuffle=False,
# num_workers=num_workers,
# pin_memory=True,
# )
#
# return train_dataloader, test_dataloader, class_names
# Commented out IPython magic to ensure Python compatibility.
# %%writefile train.py
# #train.py only in this cell
#
# """
# Trains a PyTorch image classification model using device-agnostic code.
# """
#
# import os
# import torch
# #import data_setup, engine, model_builder, utils
#
# from torchvision import transforms
#
# # Setup hyperparameters
# NUM_EPOCHS = 5
# BATCH_SIZE = 32
# HIDDEN_UNITS = 10
# LEARNING_RATE = 0.001
#
# # Setup directories
# train_dir = "data/pizza_steak_sushi/train"
# test_dir = "data/pizza_steak_sushi/test"
#
# # Setup target device
# device = "cuda" if torch.cuda.is_available() else "cpu"
#
# # Create transforms
# data_transform = transforms.Compose([
# transforms.Resize((64, 64)),
# transforms.ToTensor()
# ])
#
# # Create DataLoaders with help from data_setup.py
# train_dataloader, test_dataloader, class_names = data_setup.create_dataloaders(
# train_dir=train_dir,
# test_dir=test_dir,
# transform=data_transform,
# batch_size=BATCH_SIZE
# )
#
# # Create model with help from model_builder.py
# model = model_builder.TinyVGG(
# input_shape=3,
# hidden_units=HIDDEN_UNITS,
# output_shape=len(class_names)
# ).to(device)
#
# # Set loss and optimizer
# loss_fn = torch.nn.CrossEntropyLoss()
# optimizer = torch.optim.Adam(model.parameters(),
# lr=LEARNING_RATE)
#
# # Start training with help from engine.py
# engine.train(model=model,
# train_dataloader=train_dataloader,
# test_dataloader=test_dataloader,
# loss_fn=loss_fn,
# optimizer=optimizer,
# epochs=NUM_EPOCHS,
# device=device)
#
# # Save the model with help from utils.py
# utils.save_model(model=model,
# target_dir="models",
# model_name="05_going_modular_script_mode_tinyvgg_model.pth")
#
#
#
#
!python /content/data_setup.py/train.py --batch_size 64 --learning_rate 0.001 --num_epochs 25
# 1. Get pretrained weights for ViT-Base
pretrained_vit_weights = torchvision.models.ViT_B_16_Weights.DEFAULT
# 2. Setup a ViT model instance with pretrained weights
pretrained_vit = torchvision.models.vit_b_16(weights=pretrained_vit_weights).to(device)
# 3. Freeze the base parameters
for parameter in pretrained_vit.parameters():
parameter.requires_grad = False
# 4. Change the classifier head
class_names = ['Bad_tire','Good_tire']
set_seeds()
pretrained_vit.heads = nn.Linear(in_features=768, out_features=len(class_names)).to(device)
# pretrained_vit # uncomment for model output
from torchinfo import summary
# Print a summary using torchinfo (uncomment for actual output)
summary(model=pretrained_vit,
input_size=(32, 3, 224, 224), # (batch_size, color_channels, height, width)
#col_names=["input_size"], # uncomment for smaller output
col_names=["input_size", "output_size", "num_params", "trainable"],
col_width=20,
row_settings=["var_names"]
)
# Setup directory paths to train and test images
train_dir = '/content/drive/MyDrive/Test/test'
test_dir = '/content/drive/MyDrive/Train/train'
# Get automatic transforms from pretrained ViT weights
pretrained_vit_transforms = pretrained_vit_weights.transforms()
print(pretrained_vit_transforms)
import os
from torchvision import datasets, transforms
from torch.utils.data import DataLoader
NUM_WORKERS = os.cpu_count()
def create_dataloaders(
train_dir: str,
test_dir: str,
transform: transforms.Compose,
batch_size: int,
num_workers: int=NUM_WORKERS
):
# Use ImageFolder to create dataset(s)
train_data = datasets.ImageFolder(train_dir, transform=transform)
test_data = datasets.ImageFolder(test_dir, transform=transform)
# Get class names
class_names = train_data.classes
# Turn images into data loaders
train_dataloader = DataLoader(
train_data,
batch_size=batch_size,
shuffle=True,
num_workers=num_workers,
pin_memory=True,
)
test_dataloader = DataLoader(
test_data,
batch_size=batch_size,
shuffle=False,
num_workers=num_workers,
pin_memory=True,
)
return train_dataloader, test_dataloader, class_names
# Setup dataloaders
train_dataloader_pretrained, test_dataloader_pretrained, class_names = create_dataloaders(
train_dir=train_dir,
test_dir=test_dir,
transform=pretrained_vit_transforms,
batch_size=32) # Could increase if we had more samples, such as here: https://arxiv.org/abs/2205.01580 (there are other improvements there too...)
#import data_setup.py
!python train.py --batch_size 64 --learning_rate 0.001 --num_epochs 25
import engine
# Create optimizer and loss function
optimizer = torch.optim.Adam(params=pretrained_vit.parameters(),
lr=1e-3)
loss_fn = torch.nn.CrossEntropyLoss()
# Train the classifier head of the pretrained ViT feature extractor model
set_seeds()
pretrained_vit_results = engine.train(model=pretrained_vit,
train_dataloader=train_dataloader_pretrained,
test_dataloader=test_dataloader_pretrained,
optimizer=optimizer,
loss_fn=loss_fn,
epochs=10,
device=device)
# Commented out IPython magic to ensure Python compatibility.
# %%writefile helper_functions.py
#
# # helper_functions.py
#
# """
# A series of helper functions used throughout the course.
#
# If a function gets defined once and could be used over and over, it'll go in here.
# """
# import torch
# import matplotlib.pyplot as plt
# import numpy as np
#
# from torch import nn
# import os
# import zipfile
# from pathlib import Path
# import requests
# import os
#
#
#
# # Plot linear data or training and test and predictions (optional)
# def plot_predictions(
# train_data, train_labels, test_data, test_labels, predictions=None
# ):
# """
# Plots linear training data and test data and compares predictions.
# """
# plt.figure(figsize=(10, 7))
#
# # Plot training data in blue
# plt.scatter(train_data, train_labels, c="b", s=4, label="Training data")
#
# # Plot test data in green
# plt.scatter(test_data, test_labels, c="g", s=4, label="Testing data")
#
# if predictions is not None:
# # Plot the predictions in red (predictions were made on the test data)
# plt.scatter(test_data, predictions, c="r", s=4, label="Predictions")
#
# # Show the legend
# plt.legend(prop={"size": 14})
#
#
# # Calculate accuracy (a classification metric)
# def accuracy_fn(y_true, y_pred):
# """Calculates accuracy between truth labels and predictions.
#
# Args:
# y_true (torch.Tensor): Truth labels for predictions.
# y_pred (torch.Tensor): Predictions to be compared to predictions.
#
# Returns:
# [torch.float]: Accuracy value between y_true and y_pred, e.g. 78.45
# """
# correct = torch.eq(y_true, y_pred).sum().item()
# acc = (correct / len(y_pred)) * 100
# return acc
#
#
# def print_train_time(start, end, device=None):
# """Prints difference between start and end time.
#
# Args:
# start (float): Start time of computation (preferred in timeit format).
# end (float): End time of computation.
# device ([type], optional): Device that compute is running on. Defaults to None.
#
# Returns:
# float: time between start and end in seconds (higher is longer).
# """
# total_time = end - start
# print(f"\nTrain time on {device}: {total_time:.3f} seconds")
# return total_time
#
#
# # Plot loss curves of a model
# def plot_loss_curves(results):
# """Plots training curves of a results dictionary.
#
# Args:
# results (dict): dictionary containing list of values, e.g.
# {"train_loss": [...],
# "train_acc": [...],
# "test_loss": [...],
# "test_acc": [...]}
# """
# loss = results["train_loss"]
# test_loss = results["test_loss"]
#
# accuracy = results["train_acc"]
# test_accuracy = results["test_acc"]
#
# epochs = range(len(results["train_loss"]))
#
# plt.figure(figsize=(15, 7))
#
# # Plot loss
# plt.subplot(1, 2, 1)
# plt.plot(epochs, loss, label="train_loss")
# plt.plot(epochs, test_loss, label="test_loss")
# plt.title("Loss")
# plt.xlabel("Epochs")
# plt.legend()
#
# # Plot accuracy
# plt.subplot(1, 2, 2)
# plt.plot(epochs, accuracy, label="train_accuracy")
# plt.plot(epochs, test_accuracy, label="test_accuracy")
# plt.title("Accuracy")
# plt.xlabel("Epochs")
# plt.legend()
#
#
# # Pred and plot image function from notebook 04
# # See creation: https://www.learnpytorch.io/04_pytorch_custom_datasets/#113-putting-custom-image-prediction-together-building-a-function
# from typing import List
# import torchvision
#
#
# def pred_and_plot_image(
# model: torch.nn.Module,
# image_path: str,
# class_names: List[str] = None,
# transform=None,
# device: torch.device = "cuda" if torch.cuda.is_available() else "cpu",
# ):
# """Makes a prediction on a target image with a trained model and plots the image.
#
# Args:
# model (torch.nn.Module): trained PyTorch image classification model.
# image_path (str): filepath to target image.
# class_names (List[str], optional): different class names for target image. Defaults to None.
# transform (_type_, optional): transform of target image. Defaults to None.
# device (torch.device, optional): target device to compute on. Defaults to "cuda" if torch.cuda.is_available() else "cpu".
#
# Returns:
# Matplotlib plot of target image and model prediction as title.
#
# Example usage:
# pred_and_plot_image(model=model,
# image="some_image.jpeg",
# class_names=["class_1", "class_2", "class_3"],
# transform=torchvision.transforms.ToTensor(),
# device=device)
# """
#
# # 1. Load in image and convert the tensor values to float32
# target_image = torchvision.io.read_image(str(image_path)).type(torch.float32)
#
# # 2. Divide the image pixel values by 255 to get them between [0, 1]
# target_image = target_image / 255.0
#
# # 3. Transform if necessary
# if transform:
# target_image = transform(target_image)
#
# # 4. Make sure the model is on the target device
# model.to(device)
#
# # 5. Turn on model evaluation mode and inference mode
# model.eval()
# with torch.inference_mode():
# # Add an extra dimension to the image
# target_image = target_image.unsqueeze(dim=0)
#
# # Make a prediction on image with an extra dimension and send it to the target device
# target_image_pred = model(target_image.to(device))
#
# # 6. Convert logits -> prediction probabilities (using torch.softmax() for multi-class classification)
# target_image_pred_probs = torch.softmax(target_image_pred, dim=1)
#
# # 7. Convert prediction probabilities -> prediction labels
# target_image_pred_label = torch.argmax(target_image_pred_probs, dim=1)
#
# # 8. Plot the image alongside the prediction and prediction probability
# plt.imshow(
# target_image.squeeze().permute(1, 2, 0)
# ) # make sure it's the right size for matplotlib
# if class_names:
# title = f"Pred: {class_names[target_image_pred_label.cpu()]} | Prob: {target_image_pred_probs.max().cpu():.3f}"
# else:
# title = f"Pred: {target_image_pred_label} | Prob: {target_image_pred_probs.max().cpu():.3f}"
# plt.title(title)
# plt.axis(False)
#
# def set_seeds(seed: int=42):
# """Sets random sets for torch operations.
#
# Args:
# seed (int, optional): Random seed to set. Defaults to 42.
# """
# # Set the seed for general torch operations
# torch.manual_seed(seed)
# # Set the seed for CUDA torch operations (ones that happen on the GPU)
# torch.cuda.manual_seed(seed)
#
# Plot the loss curves
from helper_functions import plot_loss_curves
plot_loss_curves(pretrained_vit_results)
import requests
# Import function to make predictions on images and plot them
from predict import pred_and_plot_image
# Setup custom image path
custom_image_path = "/content/drive/MyDrive/validation/Bad_Tire (3).jpg"
# Predict on custom image
pred_and_plot_image(model=pretrained_vit,
image_path=custom_image_path,
class_names=class_names)
# Import function to make predictions on images and plot them
from predict import pred_and_plot_image
# Setup custom image path
custom_image_path = "/content/drive/MyDrive/validation/Good_Tire (4).jpg"
# Predict on custom image
pred_and_plot_image(model=pretrained_vit,
image_path=custom_image_path,
class_names=class_names) |