Alessio Grancini
commited on
Update app.py
Browse files
app.py
CHANGED
@@ -5,6 +5,7 @@ import os
|
|
5 |
import utils
|
6 |
import plotly.graph_objects as go
|
7 |
import spaces
|
|
|
8 |
|
9 |
from image_segmenter import ImageSegmenter
|
10 |
from monocular_depth_estimator import MonocularDepthEstimator
|
@@ -24,7 +25,21 @@ def initialize_models():
|
|
24 |
if depth_estimator is None:
|
25 |
depth_estimator = MonocularDepthEstimator(model_type="midas_v21_small_256")
|
26 |
|
27 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
28 |
def process_image(image):
|
29 |
try:
|
30 |
print("Starting image processing")
|
@@ -43,7 +58,7 @@ def process_image(image):
|
|
43 |
print(traceback.format_exc())
|
44 |
raise
|
45 |
|
46 |
-
@
|
47 |
def test_process_img(image):
|
48 |
initialize_models()
|
49 |
image = utils.resize(image)
|
@@ -51,7 +66,7 @@ def test_process_img(image):
|
|
51 |
depthmap, depth_colormap = depth_estimator.make_prediction(image)
|
52 |
return image_segmentation, objects_data, depthmap, depth_colormap
|
53 |
|
54 |
-
@
|
55 |
def process_video(vid_path=None):
|
56 |
try:
|
57 |
initialize_models()
|
@@ -66,6 +81,7 @@ def process_video(vid_path=None):
|
|
66 |
dist_image = utils.draw_depth_info(frame, depthmap, objects_data)
|
67 |
yield cv2.cvtColor(image_segmentation, cv2.COLOR_BGR2RGB), depth_colormap, cv2.cvtColor(dist_image, cv2.COLOR_BGR2RGB)
|
68 |
|
|
|
69 |
return None
|
70 |
except Exception as e:
|
71 |
print(f"Error in process_video: {str(e)}")
|
@@ -83,7 +99,7 @@ def update_confidence_threshold(thres_val):
|
|
83 |
initialize_models()
|
84 |
img_seg.confidence_threshold = thres_val/100
|
85 |
|
86 |
-
@
|
87 |
def model_selector(model_type):
|
88 |
global img_seg, depth_estimator
|
89 |
|
@@ -104,6 +120,23 @@ def cancel():
|
|
104 |
CANCEL_PROCESSING = True
|
105 |
|
106 |
if __name__ == "__main__":
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
107 |
with gr.Blocks() as my_app:
|
108 |
# title
|
109 |
gr.Markdown("<h1><center>Simultaneous Segmentation and Depth Estimation</center></h1>")
|
@@ -134,7 +167,6 @@ if __name__ == "__main__":
|
|
134 |
dist_img_output = gr.Image(height=300, label="Distance")
|
135 |
pcd_img_output = gr.Plot(label="Point Cloud")
|
136 |
|
137 |
-
gr.Markdown("## Sample Images")
|
138 |
gr.Examples(
|
139 |
examples=[os.path.join(os.path.dirname(__file__), "assets/images/baggage_claim.jpg"),
|
140 |
os.path.join(os.path.dirname(__file__), "assets/images/kitchen_2.png"),
|
@@ -172,7 +204,6 @@ if __name__ == "__main__":
|
|
172 |
with gr.Row():
|
173 |
dist_vid_output = gr.Image(height=300, label="Distance")
|
174 |
|
175 |
-
gr.Markdown("## Sample Videos")
|
176 |
gr.Examples(
|
177 |
examples=[os.path.join(os.path.dirname(__file__), "assets/videos/input_video.mp4"),
|
178 |
os.path.join(os.path.dirname(__file__), "assets/videos/driving.mp4"),
|
|
|
5 |
import utils
|
6 |
import plotly.graph_objects as go
|
7 |
import spaces
|
8 |
+
import torch
|
9 |
|
10 |
from image_segmenter import ImageSegmenter
|
11 |
from monocular_depth_estimator import MonocularDepthEstimator
|
|
|
25 |
if depth_estimator is None:
|
26 |
depth_estimator = MonocularDepthEstimator(model_type="midas_v21_small_256")
|
27 |
|
28 |
+
def safe_gpu_decorator(func):
|
29 |
+
"""Custom decorator to handle GPU operations safely"""
|
30 |
+
def wrapper(*args, **kwargs):
|
31 |
+
try:
|
32 |
+
return func(*args, **kwargs)
|
33 |
+
except RuntimeError as e:
|
34 |
+
if "cudaGetDeviceCount" in str(e):
|
35 |
+
print("GPU initialization failed, falling back to CPU")
|
36 |
+
# Set environment variable to force CPU
|
37 |
+
os.environ['CUDA_VISIBLE_DEVICES'] = ''
|
38 |
+
return func(*args, **kwargs)
|
39 |
+
raise
|
40 |
+
return wrapper
|
41 |
+
|
42 |
+
@safe_gpu_decorator
|
43 |
def process_image(image):
|
44 |
try:
|
45 |
print("Starting image processing")
|
|
|
58 |
print(traceback.format_exc())
|
59 |
raise
|
60 |
|
61 |
+
@safe_gpu_decorator
|
62 |
def test_process_img(image):
|
63 |
initialize_models()
|
64 |
image = utils.resize(image)
|
|
|
66 |
depthmap, depth_colormap = depth_estimator.make_prediction(image)
|
67 |
return image_segmentation, objects_data, depthmap, depth_colormap
|
68 |
|
69 |
+
@safe_gpu_decorator
|
70 |
def process_video(vid_path=None):
|
71 |
try:
|
72 |
initialize_models()
|
|
|
81 |
dist_image = utils.draw_depth_info(frame, depthmap, objects_data)
|
82 |
yield cv2.cvtColor(image_segmentation, cv2.COLOR_BGR2RGB), depth_colormap, cv2.cvtColor(dist_image, cv2.COLOR_BGR2RGB)
|
83 |
|
84 |
+
vid_cap.release()
|
85 |
return None
|
86 |
except Exception as e:
|
87 |
print(f"Error in process_video: {str(e)}")
|
|
|
99 |
initialize_models()
|
100 |
img_seg.confidence_threshold = thres_val/100
|
101 |
|
102 |
+
@safe_gpu_decorator
|
103 |
def model_selector(model_type):
|
104 |
global img_seg, depth_estimator
|
105 |
|
|
|
120 |
CANCEL_PROCESSING = True
|
121 |
|
122 |
if __name__ == "__main__":
|
123 |
+
# Try to initialize CUDA early to catch any issues
|
124 |
+
try:
|
125 |
+
if torch.cuda.is_available():
|
126 |
+
print("CUDA is available. Using GPU.")
|
127 |
+
# Test CUDA initialization
|
128 |
+
torch.cuda.init()
|
129 |
+
device = torch.device("cuda")
|
130 |
+
else:
|
131 |
+
print("CUDA is not available. Using CPU.")
|
132 |
+
os.environ['CUDA_VISIBLE_DEVICES'] = ''
|
133 |
+
device = torch.device("cpu")
|
134 |
+
except RuntimeError as e:
|
135 |
+
print(f"CUDA initialization failed: {e}")
|
136 |
+
print("Falling back to CPU mode")
|
137 |
+
os.environ['CUDA_VISIBLE_DEVICES'] = ''
|
138 |
+
device = torch.device("cpu")
|
139 |
+
|
140 |
with gr.Blocks() as my_app:
|
141 |
# title
|
142 |
gr.Markdown("<h1><center>Simultaneous Segmentation and Depth Estimation</center></h1>")
|
|
|
167 |
dist_img_output = gr.Image(height=300, label="Distance")
|
168 |
pcd_img_output = gr.Plot(label="Point Cloud")
|
169 |
|
|
|
170 |
gr.Examples(
|
171 |
examples=[os.path.join(os.path.dirname(__file__), "assets/images/baggage_claim.jpg"),
|
172 |
os.path.join(os.path.dirname(__file__), "assets/images/kitchen_2.png"),
|
|
|
204 |
with gr.Row():
|
205 |
dist_vid_output = gr.Image(height=300, label="Distance")
|
206 |
|
|
|
207 |
gr.Examples(
|
208 |
examples=[os.path.join(os.path.dirname(__file__), "assets/videos/input_video.mp4"),
|
209 |
os.path.join(os.path.dirname(__file__), "assets/videos/driving.mp4"),
|