mahmoud666 commited on
Commit
185bd57
Β·
verified Β·
1 Parent(s): 311733e

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +197 -0
app.py ADDED
@@ -0,0 +1,197 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import streamlit as st
2
+ import os
3
+ from openai import OpenAI
4
+ from langchain.memory import ConversationBufferMemory
5
+ from langchain.vectorstores import FAISS
6
+ from langchain.text_splitter import RecursiveCharacterTextSplitter
7
+ from langchain.embeddings import HuggingFaceEmbeddings
8
+ from langchain.document_loaders import PyPDFLoader, TextLoader
9
+ import tempfile
10
+
11
+ # Page configuration
12
+ st.set_page_config(page_title="DeepSeek RAG Chatbot", page_icon="πŸ€–", layout="wide")
13
+
14
+ # App title and description
15
+ st.title("πŸ€– DeepSeek RAG Chatbot")
16
+ st.subheader("A chatbot that uses your documents to give informed answers")
17
+
18
+ # Set up API key input
19
+ if 'DEEPSEEK_API_KEY' not in st.session_state:
20
+ api_key = st.text_input("Enter your DeepSeek API Key:", type="password")
21
+ if api_key:
22
+ st.session_state['DEEPSEEK_API_KEY'] = api_key
23
+ os.environ['DEEPSEEK_API_KEY'] = api_key
24
+ st.success("API Key saved!")
25
+ st.rerun()
26
+
27
+ # Initialize session state variables
28
+ if 'memory' not in st.session_state:
29
+ st.session_state.memory = ConversationBufferMemory(return_messages=True)
30
+ if 'chat_history' not in st.session_state:
31
+ st.session_state.chat_history = []
32
+ if 'vectorstore' not in st.session_state:
33
+ st.session_state.vectorstore = None
34
+ if 'client' not in st.session_state and 'DEEPSEEK_API_KEY' in st.session_state:
35
+ try:
36
+ # Initialize DeepSeek client for chat
37
+ st.session_state.client = OpenAI(
38
+ api_key=st.session_state['DEEPSEEK_API_KEY'],
39
+ base_url="https://api.deepseek.com"
40
+ )
41
+
42
+ # Initialize small HuggingFace embeddings model
43
+ # Using paraphrase-MiniLM-L3-v2 - a smaller version with only 22MB size
44
+ st.session_state.embeddings = HuggingFaceEmbeddings(
45
+ model_name="sentence-transformers/paraphrase-MiniLM-L3-v2"
46
+ )
47
+
48
+ st.success("Models loaded successfully!")
49
+ except Exception as e:
50
+ st.error(f"Error initializing API: {str(e)}")
51
+
52
+ # Function to process uploaded documents
53
+ def process_documents(uploaded_files):
54
+ temp_dir = tempfile.mkdtemp()
55
+ for file in uploaded_files:
56
+ file_path = os.path.join(temp_dir, file.name)
57
+ with open(file_path, "wb") as f:
58
+ f.write(file.getbuffer())
59
+
60
+ # Load documents based on file type
61
+ documents = []
62
+ for file in uploaded_files:
63
+ if file.name.endswith('.pdf'):
64
+ loader = PyPDFLoader(os.path.join(temp_dir, file.name))
65
+ documents.extend(loader.load())
66
+ elif file.name.endswith('.txt'):
67
+ loader = TextLoader(os.path.join(temp_dir, file.name))
68
+ documents.extend(loader.load())
69
+
70
+ # Split documents into chunks
71
+ text_splitter = RecursiveCharacterTextSplitter(
72
+ chunk_size=1000,
73
+ chunk_overlap=200
74
+ )
75
+ document_chunks = text_splitter.split_documents(documents)
76
+
77
+ # Create or update vector store
78
+ if st.session_state.vectorstore is None:
79
+ st.session_state.vectorstore = FAISS.from_documents(
80
+ document_chunks,
81
+ st.session_state.embeddings
82
+ )
83
+ else:
84
+ # Add new documents to existing vectorstore
85
+ st.session_state.vectorstore.add_documents(document_chunks)
86
+
87
+ return len(document_chunks)
88
+
89
+ # Function to retrieve relevant context from vector database
90
+ def retrieve_context(query, k=3):
91
+ if st.session_state.vectorstore is None:
92
+ return ""
93
+
94
+ docs = st.session_state.vectorstore.similarity_search(query, k=k)
95
+ context = "\n\n".join([doc.page_content for doc in docs])
96
+ return context
97
+
98
+ # Main application layout
99
+ if 'DEEPSEEK_API_KEY' in st.session_state:
100
+ # Create a two-column layout
101
+ col1, col2 = st.columns([3, 1])
102
+
103
+ with col2:
104
+ st.header("Document Upload")
105
+ uploaded_files = st.file_uploader(
106
+ "Upload your documents",
107
+ accept_multiple_files=True,
108
+ type=["pdf", "txt"]
109
+ )
110
+
111
+ if uploaded_files:
112
+ if st.button("Process Documents"):
113
+ with st.spinner("Processing documents..."):
114
+ num_chunks = process_documents(uploaded_files)
115
+ st.success(f"Successfully processed {len(uploaded_files)} documents into {num_chunks} chunks!")
116
+
117
+ st.header("RAG Settings")
118
+ k_documents = st.slider("Number of documents to retrieve", min_value=1, max_value=10, value=3)
119
+
120
+ # Clear conversation button
121
+ if st.button("Clear Conversation"):
122
+ st.session_state.memory = ConversationBufferMemory(return_messages=True)
123
+ st.session_state.chat_history = []
124
+ st.success("Conversation cleared!")
125
+ st.rerun()
126
+
127
+ # Clear knowledge base button
128
+ if st.button("Clear Knowledge Base"):
129
+ st.session_state.vectorstore = None
130
+ st.success("Knowledge base cleared!")
131
+
132
+ with col1:
133
+ # Display chat history
134
+ for message in st.session_state.chat_history:
135
+ with st.chat_message(message["role"]):
136
+ st.write(message["content"])
137
+
138
+ # User input
139
+ user_input = st.chat_input("Type your message here...")
140
+
141
+ if user_input:
142
+ # Add user message to chat history
143
+ st.session_state.chat_history.append({"role": "user", "content": user_input})
144
+
145
+ # Display user message
146
+ with st.chat_message("user"):
147
+ st.write(user_input)
148
+
149
+ # Get model response
150
+ with st.chat_message("assistant"):
151
+ with st.spinner("Thinking..."):
152
+ try:
153
+ # Retrieve relevant context from vector database
154
+ context = retrieve_context(user_input, k=k_documents)
155
+
156
+ # Prepare chat history for DeepSeek API
157
+ system_prompt = "You are a helpful assistant with access to a knowledge base."
158
+ if context:
159
+ system_prompt += f"\n\nRelevant information from knowledge base:\n{context}\n\nUse this information to answer the user's question. If the information doesn't contain the answer, just say that you don't know based on the available information."
160
+
161
+ messages = [{"role": "system", "content": system_prompt}]
162
+ for msg in st.session_state.chat_history:
163
+ messages.append({"role": msg["role"], "content": msg["content"]})
164
+
165
+ # Call DeepSeek API
166
+ response = st.session_state.client.chat.completions.create(
167
+ model="deepseek-chat",
168
+ messages=messages,
169
+ stream=False
170
+ )
171
+
172
+ assistant_response = response.choices[0].message.content
173
+ st.write(assistant_response)
174
+
175
+ # Add assistant response to chat history
176
+ st.session_state.chat_history.append({"role": "assistant", "content": assistant_response})
177
+
178
+ except Exception as e:
179
+ st.error(f"Error: {str(e)}")
180
+
181
+ # Sidebar with info
182
+ with st.sidebar:
183
+ st.header("About")
184
+ st.markdown("""
185
+ This RAG chatbot uses:
186
+ - 🦜 LangChain for memory and document processing
187
+ - πŸ” FAISS for vector storage and retrieval
188
+ - 🧠 HuggingFace for lightweight embeddings (paraphrase-MiniLM-L3-v2)
189
+ - πŸ€– DeepSeek API for AI responses
190
+ - πŸ–₯️ Streamlit for the web interface
191
+
192
+ The chatbot can:
193
+ - Upload and process PDF and text documents
194
+ - Retrieve relevant information from documents
195
+ - Generate informed responses using your documents
196
+ - Maintain conversation context
197
+ """)