RAG_APP / app.py
mahmoud666's picture
Update app.py
3489832 verified
import streamlit as st
import os
from openai import OpenAI
from langchain.memory import ConversationBufferMemory
from langchain.vectorstores import FAISS
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain.embeddings import HuggingFaceEmbeddings
from langchain.document_loaders import PyPDFLoader, TextLoader
import tempfile
# Page configuration
st.set_page_config(page_title="DeepSeek RAG Chatbot", page_icon="πŸ€–", layout="wide")
# App title and description
st.title("πŸ€– DeepSeek RAG Chatbot")
st.subheader("A chatbot that uses your documents to give informed answers")
# Set up API key input
if 'DEEPSEEK_API_KEY' not in st.session_state:
api_key = st.text_input("Enter your DeepSeek API Key:", type="password")
if api_key:
st.session_state['DEEPSEEK_API_KEY'] = api_key
os.environ['DEEPSEEK_API_KEY'] = api_key
st.success("API Key saved!")
st.rerun()
# Initialize session state variables
if 'memory' not in st.session_state:
st.session_state.memory = ConversationBufferMemory(return_messages=True)
if 'chat_history' not in st.session_state:
st.session_state.chat_history = []
if 'vectorstore' not in st.session_state:
st.session_state.vectorstore = None
if 'client' not in st.session_state and 'DEEPSEEK_API_KEY' in st.session_state:
try:
# Initialize DeepSeek client for chat
st.session_state.client = OpenAI(
api_key=st.session_state['DEEPSEEK_API_KEY'],
base_url="https://api.deepseek.com"
)
# Initialize small HuggingFace embeddings model
# Using paraphrase-MiniLM-L3-v2 - a smaller version with only 22MB size
st.session_state.embeddings = HuggingFaceEmbeddings(
model_name="sentence-transformers/paraphrase-MiniLM-L3-v2"
)
st.success("Models loaded successfully!")
except Exception as e:
st.error(f"Error initializing API: {str(e)}")
# Function to process uploaded documents
def process_documents(uploaded_files):
temp_dir = tempfile.mkdtemp()
for file in uploaded_files:
file_path = os.path.join(temp_dir, file.name)
with open(file_path, "wb") as f:
f.write(file.getbuffer())
# Load documents based on file type
documents = []
for file in uploaded_files:
if file.name.endswith('.pdf'):
loader = PyPDFLoader(os.path.join(temp_dir, file.name))
documents.extend(loader.load())
elif file.name.endswith('.txt'):
loader = TextLoader(os.path.join(temp_dir, file.name))
documents.extend(loader.load())
# Split documents into chunks
text_splitter = RecursiveCharacterTextSplitter(
chunk_size=1000,
chunk_overlap=200
)
document_chunks = text_splitter.split_documents(documents)
# Create or update vector store
if st.session_state.vectorstore is None:
st.session_state.vectorstore = FAISS.from_documents(
document_chunks,
st.session_state.embeddings
)
else:
# Add new documents to existing vectorstore
st.session_state.vectorstore.add_documents(document_chunks)
return len(document_chunks)
# Function to retrieve relevant context from vector database
def retrieve_context(query, k=3):
if st.session_state.vectorstore is None:
return ""
docs = st.session_state.vectorstore.similarity_search(query, k=k)
context = "\n\n".join([doc.page_content for doc in docs])
return context
# Main application layout
if 'DEEPSEEK_API_KEY' in st.session_state:
# Create a sidebar for document upload and settings
with st.sidebar:
st.header("Document Upload")
uploaded_files = st.file_uploader(
"Upload your documents",
accept_multiple_files=True,
type=["pdf", "txt"]
)
if uploaded_files:
if st.button("Process Documents"):
with st.spinner("Processing documents..."):
num_chunks = process_documents(uploaded_files)
st.success(f"Successfully processed {len(uploaded_files)} documents into {num_chunks} chunks!")
st.header("RAG Settings")
k_documents = st.slider("Number of documents to retrieve", min_value=1, max_value=10, value=3)
# Clear conversation button
if st.button("Clear Conversation"):
st.session_state.memory = ConversationBufferMemory(return_messages=True)
st.session_state.chat_history = []
st.success("Conversation cleared!")
st.rerun()
# Clear knowledge base button
if st.button("Clear Knowledge Base"):
st.session_state.vectorstore = None
st.success("Knowledge base cleared!")
st.header("About")
st.markdown("""
This RAG chatbot uses:
- 🦜 LangChain for memory and document processing
- πŸ” FAISS for vector storage and retrieval
- 🧠 HuggingFace for lightweight embeddings (paraphrase-MiniLM-L3-v2)
- πŸ€– DeepSeek API for AI responses
- πŸ–₯️ Streamlit for the web interface
The chatbot can:
- Upload and process PDF and text documents
- Retrieve relevant information from documents
- Generate informed responses using your documents
- Maintain conversation context
""")
# Main chat area - create a container for the chat history
chat_container = st.container()
with chat_container:
# Display chat history
for message in st.session_state.chat_history:
with st.chat_message(message["role"]):
st.write(message["content"])
# IMPORTANT: Place chat_input outside of any container and if block
# This must be at the main page level
user_input = st.chat_input("Type your message here...")
# Handle user input - but only process if API key is available
if user_input and 'DEEPSEEK_API_KEY' in st.session_state:
# Add user message to chat history
st.session_state.chat_history.append({"role": "user", "content": user_input})
# Display user message
with st.chat_message("user"):
st.write(user_input)
# Get model response
with st.chat_message("assistant"):
with st.spinner("Thinking..."):
try:
# Retrieve relevant context from vector database
context = retrieve_context(user_input, k=k_documents)
# Prepare chat history for DeepSeek API
system_prompt = "You are a helpful assistant with access to a knowledge base."
if context:
system_prompt += f"\n\nRelevant information from knowledge base:\n{context}\n\nUse this information to answer the user's question. If the information doesn't contain the answer, just say that you don't know based on the available information."
messages = [{"role": "system", "content": system_prompt}]
for msg in st.session_state.chat_history:
messages.append({"role": msg["role"], "content": msg["content"]})
# Call DeepSeek API
response = st.session_state.client.chat.completions.create(
model="deepseek-chat",
messages=messages,
stream=False
)
assistant_response = response.choices[0].message.content
st.write(assistant_response)
# Add assistant response to chat history
st.session_state.chat_history.append({"role": "assistant", "content": assistant_response})
except Exception as e:
st.error(f"Error: {str(e)}")