# -*- coding: utf-8 -*- # Copyright (c) Alibaba, Inc. and its affiliates. import cv2 import numpy as np import torch from .utils import convert_to_numpy class SubjectAnnotator: def __init__(self, cfg, device=None): self.mode = cfg.get('MODE', "salientmasktrack") self.use_aug = cfg.get('USE_AUG', False) self.use_crop = cfg.get('USE_CROP', False) self.roi_only = cfg.get('ROI_ONLY', False) self.return_mask = cfg.get('RETURN_MASK', True) from .inpainting import InpaintingAnnotator self.inp_anno = InpaintingAnnotator(cfg['INPAINTING'], device=device) if self.use_aug: from .maskaug import MaskAugAnnotator self.maskaug_anno = MaskAugAnnotator(cfg={}) assert self.mode in ["plain", "salient", "mask", "bbox", "salientmasktrack", "salientbboxtrack", "masktrack", "bboxtrack", "label", "caption", "all"] def forward(self, image=None, mode=None, return_mask=None, mask_cfg=None, mask=None, bbox=None, label=None, caption=None): return_mask = return_mask if return_mask is not None else self.return_mask if mode == "plain": return {"image": image, "mask": None} if return_mask else image inp_res = self.inp_anno.forward(image, mask=mask, bbox=bbox, label=label, caption=caption, mode=mode, return_mask=True, return_source=True) src_image = inp_res['src_image'] mask = inp_res['mask'] if self.use_aug and mask_cfg is not None: mask = self.maskaug_anno.forward(mask, mask_cfg) _, binary_mask = cv2.threshold(mask, 1, 255, cv2.THRESH_BINARY) if (binary_mask is None or binary_mask.size == 0 or cv2.countNonZero(binary_mask) == 0): x, y, w, h = 0, 0, binary_mask.shape[1], binary_mask.shape[0] else: x, y, w, h = cv2.boundingRect(binary_mask) ret_mask = mask.copy() ret_image = src_image.copy() if self.roi_only: ret_image[mask == 0] = 255 if self.use_crop: ret_image = ret_image[y:y + h, x:x + w] ret_mask = ret_mask[y:y + h, x:x + w] if return_mask: return {"image": ret_image, "mask": ret_mask} else: return ret_image