|
|
|
|
|
import os |
|
import sys |
|
import gc |
|
import math |
|
import random |
|
import types |
|
import logging |
|
from contextlib import contextmanager |
|
from functools import partial |
|
|
|
from PIL import Image |
|
import torchvision.transforms.functional as TF |
|
import torch |
|
import torch.nn.functional as F |
|
import torch.cuda.amp as amp |
|
import torch.distributed as dist |
|
from tqdm import tqdm |
|
|
|
from wan.text2video import (WanT2V, T5EncoderModel, WanVAE, shard_model, FlowDPMSolverMultistepScheduler, |
|
get_sampling_sigmas, retrieve_timesteps, FlowUniPCMultistepScheduler) |
|
from .modules.model import VaceWanModel |
|
from ..utils.preprocessor import VaceVideoProcessor |
|
|
|
|
|
class WanVace(WanT2V): |
|
def __init__( |
|
self, |
|
config, |
|
checkpoint_dir, |
|
device_id=0, |
|
rank=0, |
|
t5_fsdp=False, |
|
dit_fsdp=False, |
|
use_usp=False, |
|
t5_cpu=False, |
|
): |
|
r""" |
|
Initializes the Wan text-to-video generation model components. |
|
|
|
Args: |
|
config (EasyDict): |
|
Object containing model parameters initialized from config.py |
|
checkpoint_dir (`str`): |
|
Path to directory containing model checkpoints |
|
device_id (`int`, *optional*, defaults to 0): |
|
Id of target GPU device |
|
rank (`int`, *optional*, defaults to 0): |
|
Process rank for distributed training |
|
t5_fsdp (`bool`, *optional*, defaults to False): |
|
Enable FSDP sharding for T5 model |
|
dit_fsdp (`bool`, *optional*, defaults to False): |
|
Enable FSDP sharding for DiT model |
|
use_usp (`bool`, *optional*, defaults to False): |
|
Enable distribution strategy of USP. |
|
t5_cpu (`bool`, *optional*, defaults to False): |
|
Whether to place T5 model on CPU. Only works without t5_fsdp. |
|
""" |
|
self.device = torch.device(f"cuda:{device_id}") |
|
self.config = config |
|
self.rank = rank |
|
self.t5_cpu = t5_cpu |
|
|
|
self.num_train_timesteps = config.num_train_timesteps |
|
self.param_dtype = config.param_dtype |
|
|
|
shard_fn = partial(shard_model, device_id=device_id) |
|
self.text_encoder = T5EncoderModel( |
|
text_len=config.text_len, |
|
dtype=config.t5_dtype, |
|
device=torch.device('cpu'), |
|
checkpoint_path=os.path.join(checkpoint_dir, config.t5_checkpoint), |
|
tokenizer_path=os.path.join(checkpoint_dir, config.t5_tokenizer), |
|
shard_fn=shard_fn if t5_fsdp else None) |
|
|
|
self.vae_stride = config.vae_stride |
|
self.patch_size = config.patch_size |
|
self.vae = WanVAE( |
|
vae_pth=os.path.join(checkpoint_dir, config.vae_checkpoint), |
|
device=self.device) |
|
|
|
logging.info(f"Creating VaceWanModel from {checkpoint_dir}") |
|
self.model = VaceWanModel.from_pretrained(checkpoint_dir) |
|
self.model.eval().requires_grad_(False) |
|
|
|
if use_usp: |
|
from xfuser.core.distributed import \ |
|
get_sequence_parallel_world_size |
|
|
|
from .distributed.xdit_context_parallel import (usp_attn_forward, |
|
usp_dit_forward, |
|
usp_dit_forward_vace) |
|
for block in self.model.blocks: |
|
block.self_attn.forward = types.MethodType( |
|
usp_attn_forward, block.self_attn) |
|
for block in self.model.vace_blocks: |
|
block.self_attn.forward = types.MethodType( |
|
usp_attn_forward, block.self_attn) |
|
self.model.forward = types.MethodType(usp_dit_forward, self.model) |
|
self.model.forward_vace = types.MethodType(usp_dit_forward_vace, self.model) |
|
self.sp_size = get_sequence_parallel_world_size() |
|
else: |
|
self.sp_size = 1 |
|
|
|
if dist.is_initialized(): |
|
dist.barrier() |
|
if dit_fsdp: |
|
self.model = shard_fn(self.model) |
|
else: |
|
self.model.to(self.device) |
|
|
|
self.sample_neg_prompt = config.sample_neg_prompt |
|
|
|
self.vid_proc = VaceVideoProcessor(downsample=tuple([x * y for x, y in zip(config.vae_stride, self.patch_size)]), |
|
min_area=480*832, |
|
max_area=480*832, |
|
min_fps=config.sample_fps, |
|
max_fps=config.sample_fps, |
|
zero_start=True, |
|
seq_len=32760, |
|
keep_last=True) |
|
|
|
def vace_encode_frames(self, frames, ref_images, masks=None): |
|
if ref_images is None: |
|
ref_images = [None] * len(frames) |
|
else: |
|
assert len(frames) == len(ref_images) |
|
|
|
if masks is None: |
|
latents = self.vae.encode(frames) |
|
else: |
|
inactive = [i * (1 - m) + 0 * m for i, m in zip(frames, masks)] |
|
reactive = [i * m + 0 * (1 - m) for i, m in zip(frames, masks)] |
|
inactive = self.vae.encode(inactive) |
|
reactive = self.vae.encode(reactive) |
|
latents = [torch.cat((u, c), dim=0) for u, c in zip(inactive, reactive)] |
|
|
|
cat_latents = [] |
|
for latent, refs in zip(latents, ref_images): |
|
if refs is not None: |
|
if masks is None: |
|
ref_latent = self.vae.encode(refs) |
|
else: |
|
ref_latent = self.vae.encode(refs) |
|
ref_latent = [torch.cat((u, torch.zeros_like(u)), dim=0) for u in ref_latent] |
|
assert all([x.shape[1] == 1 for x in ref_latent]) |
|
latent = torch.cat([*ref_latent, latent], dim=1) |
|
cat_latents.append(latent) |
|
return cat_latents |
|
|
|
def vace_encode_masks(self, masks, ref_images=None): |
|
if ref_images is None: |
|
ref_images = [None] * len(masks) |
|
else: |
|
assert len(masks) == len(ref_images) |
|
|
|
result_masks = [] |
|
for mask, refs in zip(masks, ref_images): |
|
c, depth, height, width = mask.shape |
|
new_depth = int((depth + 3) // self.vae_stride[0]) |
|
height = 2 * (int(height) // (self.vae_stride[1] * 2)) |
|
width = 2 * (int(width) // (self.vae_stride[2] * 2)) |
|
|
|
|
|
mask = mask[0, :, :, :] |
|
mask = mask.view( |
|
depth, height, self.vae_stride[1], width, self.vae_stride[1] |
|
) |
|
mask = mask.permute(2, 4, 0, 1, 3) |
|
mask = mask.reshape( |
|
self.vae_stride[1] * self.vae_stride[2], depth, height, width |
|
) |
|
|
|
|
|
mask = F.interpolate(mask.unsqueeze(0), size=(new_depth, height, width), mode='nearest-exact').squeeze(0) |
|
|
|
if refs is not None: |
|
length = len(refs) |
|
mask_pad = torch.zeros_like(mask[:, :length, :, :]) |
|
mask = torch.cat((mask_pad, mask), dim=1) |
|
result_masks.append(mask) |
|
return result_masks |
|
|
|
def vace_latent(self, z, m): |
|
return [torch.cat([zz, mm], dim=0) for zz, mm in zip(z, m)] |
|
|
|
def prepare_source(self, src_video, src_mask, src_ref_images, num_frames, image_size, device): |
|
image_sizes = [] |
|
for i, (sub_src_video, sub_src_mask) in enumerate(zip(src_video, src_mask)): |
|
if sub_src_mask is not None and sub_src_video is not None: |
|
src_video[i], src_mask[i], _, _, _ = self.vid_proc.load_video_pair(sub_src_video, sub_src_mask) |
|
src_video[i] = src_video[i].to(device) |
|
src_mask[i] = src_mask[i].to(device) |
|
src_mask[i] = torch.clamp((src_mask[i][:1, :, :, :] + 1) / 2, min=0, max=1) |
|
image_sizes.append(src_video[i].shape[2:]) |
|
elif sub_src_video is None: |
|
src_video[i] = torch.zeros((3, num_frames, image_size[0], image_size[1]), device=device) |
|
src_mask[i] = torch.ones_like(src_video[i], device=device) |
|
image_sizes.append(image_size) |
|
else: |
|
src_video[i], _, _, _ = self.vid_proc.load_video(sub_src_video) |
|
src_video[i] = src_video[i].to(device) |
|
src_mask[i] = torch.ones_like(src_video[i], device=device) |
|
image_sizes.append(src_video[i].shape[2:]) |
|
|
|
for i, ref_images in enumerate(src_ref_images): |
|
if ref_images is not None: |
|
image_size = image_sizes[i] |
|
for j, ref_img in enumerate(ref_images): |
|
if ref_img is not None: |
|
ref_img = Image.open(ref_img).convert("RGB") |
|
ref_img = TF.to_tensor(ref_img).sub_(0.5).div_(0.5).unsqueeze(1) |
|
if ref_img.shape[-2:] != image_size: |
|
canvas_height, canvas_width = image_size |
|
ref_height, ref_width = ref_img.shape[-2:] |
|
white_canvas = torch.ones((3, 1, canvas_height, canvas_width), device=device) |
|
scale = min(canvas_height / ref_height, canvas_width / ref_width) |
|
new_height = int(ref_height * scale) |
|
new_width = int(ref_width * scale) |
|
resized_image = F.interpolate(ref_img.squeeze(1).unsqueeze(0), size=(new_height, new_width), mode='bilinear', align_corners=False).squeeze(0).unsqueeze(1) |
|
top = (canvas_height - new_height) // 2 |
|
left = (canvas_width - new_width) // 2 |
|
white_canvas[:, :, top:top + new_height, left:left + new_width] = resized_image |
|
ref_img = white_canvas |
|
src_ref_images[i][j] = ref_img.to(device) |
|
return src_video, src_mask, src_ref_images |
|
|
|
def decode_latent(self, zs, ref_images=None): |
|
if ref_images is None: |
|
ref_images = [None] * len(zs) |
|
else: |
|
assert len(zs) == len(ref_images) |
|
|
|
trimed_zs = [] |
|
for z, refs in zip(zs, ref_images): |
|
if refs is not None: |
|
z = z[:, len(refs):, :, :] |
|
trimed_zs.append(z) |
|
|
|
return self.vae.decode(trimed_zs) |
|
|
|
|
|
|
|
def generate(self, |
|
input_prompt, |
|
input_frames, |
|
input_masks, |
|
input_ref_images, |
|
size=(1280, 720), |
|
frame_num=81, |
|
context_scale=1.0, |
|
shift=5.0, |
|
sample_solver='unipc', |
|
sampling_steps=50, |
|
guide_scale=5.0, |
|
n_prompt="", |
|
seed=-1, |
|
offload_model=True): |
|
r""" |
|
Generates video frames from text prompt using diffusion process. |
|
|
|
Args: |
|
input_prompt (`str`): |
|
Text prompt for content generation |
|
size (tupele[`int`], *optional*, defaults to (1280,720)): |
|
Controls video resolution, (width,height). |
|
frame_num (`int`, *optional*, defaults to 81): |
|
How many frames to sample from a video. The number should be 4n+1 |
|
shift (`float`, *optional*, defaults to 5.0): |
|
Noise schedule shift parameter. Affects temporal dynamics |
|
sample_solver (`str`, *optional*, defaults to 'unipc'): |
|
Solver used to sample the video. |
|
sampling_steps (`int`, *optional*, defaults to 40): |
|
Number of diffusion sampling steps. Higher values improve quality but slow generation |
|
guide_scale (`float`, *optional*, defaults 5.0): |
|
Classifier-free guidance scale. Controls prompt adherence vs. creativity |
|
n_prompt (`str`, *optional*, defaults to ""): |
|
Negative prompt for content exclusion. If not given, use `config.sample_neg_prompt` |
|
seed (`int`, *optional*, defaults to -1): |
|
Random seed for noise generation. If -1, use random seed. |
|
offload_model (`bool`, *optional*, defaults to True): |
|
If True, offloads models to CPU during generation to save VRAM |
|
|
|
Returns: |
|
torch.Tensor: |
|
Generated video frames tensor. Dimensions: (C, N H, W) where: |
|
- C: Color channels (3 for RGB) |
|
- N: Number of frames (81) |
|
- H: Frame height (from size) |
|
- W: Frame width from size) |
|
""" |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if n_prompt == "": |
|
n_prompt = self.sample_neg_prompt |
|
seed = seed if seed >= 0 else random.randint(0, sys.maxsize) |
|
seed_g = torch.Generator(device=self.device) |
|
seed_g.manual_seed(seed) |
|
|
|
if not self.t5_cpu: |
|
self.text_encoder.model.to(self.device) |
|
context = self.text_encoder([input_prompt], self.device) |
|
context_null = self.text_encoder([n_prompt], self.device) |
|
if offload_model: |
|
self.text_encoder.model.cpu() |
|
else: |
|
context = self.text_encoder([input_prompt], torch.device('cpu')) |
|
context_null = self.text_encoder([n_prompt], torch.device('cpu')) |
|
context = [t.to(self.device) for t in context] |
|
context_null = [t.to(self.device) for t in context_null] |
|
|
|
|
|
z0 = self.vace_encode_frames(input_frames, input_ref_images, masks=input_masks) |
|
m0 = self.vace_encode_masks(input_masks, input_ref_images) |
|
z = self.vace_latent(z0, m0) |
|
|
|
target_shape = list(z0[0].shape) |
|
target_shape[0] = int(target_shape[0] / 2) |
|
noise = [ |
|
torch.randn( |
|
target_shape[0], |
|
target_shape[1], |
|
target_shape[2], |
|
target_shape[3], |
|
dtype=torch.float32, |
|
device=self.device, |
|
generator=seed_g) |
|
] |
|
seq_len = math.ceil((target_shape[2] * target_shape[3]) / |
|
(self.patch_size[1] * self.patch_size[2]) * |
|
target_shape[1] / self.sp_size) * self.sp_size |
|
|
|
@contextmanager |
|
def noop_no_sync(): |
|
yield |
|
|
|
no_sync = getattr(self.model, 'no_sync', noop_no_sync) |
|
|
|
|
|
with amp.autocast(dtype=self.param_dtype), torch.no_grad(), no_sync(): |
|
|
|
if sample_solver == 'unipc': |
|
sample_scheduler = FlowUniPCMultistepScheduler( |
|
num_train_timesteps=self.num_train_timesteps, |
|
shift=1, |
|
use_dynamic_shifting=False) |
|
sample_scheduler.set_timesteps( |
|
sampling_steps, device=self.device, shift=shift) |
|
timesteps = sample_scheduler.timesteps |
|
elif sample_solver == 'dpm++': |
|
sample_scheduler = FlowDPMSolverMultistepScheduler( |
|
num_train_timesteps=self.num_train_timesteps, |
|
shift=1, |
|
use_dynamic_shifting=False) |
|
sampling_sigmas = get_sampling_sigmas(sampling_steps, shift) |
|
timesteps, _ = retrieve_timesteps( |
|
sample_scheduler, |
|
device=self.device, |
|
sigmas=sampling_sigmas) |
|
else: |
|
raise NotImplementedError("Unsupported solver.") |
|
|
|
|
|
latents = noise |
|
|
|
arg_c = {'context': context, 'seq_len': seq_len} |
|
arg_null = {'context': context_null, 'seq_len': seq_len} |
|
|
|
for _, t in enumerate(tqdm(timesteps)): |
|
latent_model_input = latents |
|
timestep = [t] |
|
|
|
timestep = torch.stack(timestep) |
|
|
|
self.model.to(self.device) |
|
noise_pred_cond = self.model( |
|
latent_model_input, t=timestep, vace_context=z, vace_context_scale=context_scale, **arg_c)[0] |
|
noise_pred_uncond = self.model( |
|
latent_model_input, t=timestep, vace_context=z, vace_context_scale=context_scale,**arg_null)[0] |
|
|
|
noise_pred = noise_pred_uncond + guide_scale * ( |
|
noise_pred_cond - noise_pred_uncond) |
|
|
|
temp_x0 = sample_scheduler.step( |
|
noise_pred.unsqueeze(0), |
|
t, |
|
latents[0].unsqueeze(0), |
|
return_dict=False, |
|
generator=seed_g)[0] |
|
latents = [temp_x0.squeeze(0)] |
|
|
|
x0 = latents |
|
if offload_model: |
|
self.model.cpu() |
|
torch.cuda.empty_cache() |
|
if self.rank == 0: |
|
videos = self.decode_latent(x0, input_ref_images) |
|
|
|
del noise, latents |
|
del sample_scheduler |
|
if offload_model: |
|
gc.collect() |
|
torch.cuda.synchronize() |
|
if dist.is_initialized(): |
|
dist.barrier() |
|
|
|
return videos[0] if self.rank == 0 else None |