|
|
|
|
|
import numpy as np |
|
import torch |
|
from scipy import ndimage |
|
|
|
from .utils import convert_to_numpy |
|
|
|
|
|
class SAMImageAnnotator: |
|
def __init__(self, cfg, device=None): |
|
try: |
|
from segment_anything import sam_model_registry, SamPredictor |
|
from segment_anything.utils.transforms import ResizeLongestSide |
|
except: |
|
import warnings |
|
warnings.warn("please pip install sam package, or you can refer to models/VACE-Annotators/sam/segment_anything-1.0-py3-none-any.whl") |
|
self.task_type = cfg.get('TASK_TYPE', 'input_box') |
|
self.return_mask = cfg.get('RETURN_MASK', False) |
|
self.transform = ResizeLongestSide(1024) |
|
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu") if device is None else device |
|
seg_model = sam_model_registry[cfg.get('MODEL_NAME', 'vit_b')](checkpoint=cfg['PRETRAINED_MODEL']).eval().to(self.device) |
|
self.predictor = SamPredictor(seg_model) |
|
|
|
def forward(self, |
|
image, |
|
input_box=None, |
|
mask=None, |
|
task_type=None, |
|
return_mask=None): |
|
task_type = task_type if task_type is not None else self.task_type |
|
return_mask = return_mask if return_mask is not None else self.return_mask |
|
mask = convert_to_numpy(mask) if mask is not None else None |
|
|
|
if task_type == 'mask_point': |
|
if len(mask.shape) == 3: |
|
scribble = mask.transpose(2, 1, 0)[0] |
|
else: |
|
scribble = mask.transpose(1, 0) |
|
labeled_array, num_features = ndimage.label(scribble >= 255) |
|
centers = ndimage.center_of_mass(scribble, labeled_array, |
|
range(1, num_features + 1)) |
|
point_coords = np.array(centers) |
|
point_labels = np.array([1] * len(centers)) |
|
sample = { |
|
'point_coords': point_coords, |
|
'point_labels': point_labels |
|
} |
|
elif task_type == 'mask_box': |
|
if len(mask.shape) == 3: |
|
scribble = mask.transpose(2, 1, 0)[0] |
|
else: |
|
scribble = mask.transpose(1, 0) |
|
labeled_array, num_features = ndimage.label(scribble >= 255) |
|
centers = ndimage.center_of_mass(scribble, labeled_array, |
|
range(1, num_features + 1)) |
|
centers = np.array(centers) |
|
|
|
x_min = centers[:, 0].min() |
|
x_max = centers[:, 0].max() |
|
y_min = centers[:, 1].min() |
|
y_max = centers[:, 1].max() |
|
bbox = np.array([x_min, y_min, x_max, y_max]) |
|
sample = {'box': bbox} |
|
elif task_type == 'input_box': |
|
if isinstance(input_box, list): |
|
input_box = np.array(input_box) |
|
sample = {'box': input_box} |
|
elif task_type == 'mask': |
|
sample = {'mask_input': mask[None, :, :]} |
|
else: |
|
raise NotImplementedError |
|
|
|
self.predictor.set_image(image) |
|
masks, scores, logits = self.predictor.predict( |
|
multimask_output=False, |
|
**sample |
|
) |
|
sorted_ind = np.argsort(scores)[::-1] |
|
masks = masks[sorted_ind] |
|
scores = scores[sorted_ind] |
|
logits = logits[sorted_ind] |
|
|
|
if return_mask: |
|
return masks[0] |
|
else: |
|
ret_data = { |
|
"masks": masks, |
|
"scores": scores, |
|
"logits": logits |
|
} |
|
return ret_data |