maffia's picture
Upload 94 files
690f890 verified
# -*- coding: utf-8 -*-
# Copyright (c) Alibaba, Inc. and its affiliates.
import cv2
import torch
import numpy as np
from torchvision.transforms import Normalize, Compose, Resize, ToTensor
from .utils import convert_to_pil
class RAMAnnotator:
def __init__(self, cfg, device=None):
try:
from ram.models import ram_plus, ram, tag2text
from ram import inference_ram
except:
import warnings
warnings.warn("please pip install ram package, or you can refer to models/VACE-Annotators/ram/ram-0.0.1-py3-none-any.whl")
delete_tag_index = []
image_size = cfg.get('IMAGE_SIZE', 384)
ram_tokenizer_path = cfg['TOKENIZER_PATH']
ram_checkpoint_path = cfg['PRETRAINED_MODEL']
ram_type = cfg.get('RAM_TYPE', 'swin_l')
self.return_lang = cfg.get('RETURN_LANG', ['en']) # ['en', 'zh']
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu") if device is None else device
self.model = ram_plus(pretrained=ram_checkpoint_path, image_size=image_size, vit=ram_type,
text_encoder_type=ram_tokenizer_path, delete_tag_index=delete_tag_index).eval().to(self.device)
self.ram_transform = Compose([
Resize((image_size, image_size)),
ToTensor(),
Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
])
self.inference_ram = inference_ram
def forward(self, image):
image = convert_to_pil(image)
image_ann_trans = self.ram_transform(image).unsqueeze(0).to(self.device)
tags_e, tags_c = self.inference_ram(image_ann_trans, self.model)
tags_e_list = [tag.strip() for tag in tags_e.strip().split("|")]
tags_c_list = [tag.strip() for tag in tags_c.strip().split("|")]
if len(self.return_lang) == 1 and 'en' in self.return_lang:
return tags_e_list
elif len(self.return_lang) == 1 and 'zh' in self.return_lang:
return tags_c_list
else:
return {
"tags_e": tags_e_list,
"tags_c": tags_c_list
}