|
|
|
|
|
import math |
|
|
|
import cv2 |
|
import numpy as np |
|
|
|
|
|
def apply_min_size(sample, size, image_interpolation_method=cv2.INTER_AREA): |
|
"""Rezise the sample to ensure the given size. Keeps aspect ratio. |
|
|
|
Args: |
|
sample (dict): sample |
|
size (tuple): image size |
|
|
|
Returns: |
|
tuple: new size |
|
""" |
|
shape = list(sample['disparity'].shape) |
|
|
|
if shape[0] >= size[0] and shape[1] >= size[1]: |
|
return sample |
|
|
|
scale = [0, 0] |
|
scale[0] = size[0] / shape[0] |
|
scale[1] = size[1] / shape[1] |
|
|
|
scale = max(scale) |
|
|
|
shape[0] = math.ceil(scale * shape[0]) |
|
shape[1] = math.ceil(scale * shape[1]) |
|
|
|
|
|
sample['image'] = cv2.resize(sample['image'], |
|
tuple(shape[::-1]), |
|
interpolation=image_interpolation_method) |
|
|
|
sample['disparity'] = cv2.resize(sample['disparity'], |
|
tuple(shape[::-1]), |
|
interpolation=cv2.INTER_NEAREST) |
|
sample['mask'] = cv2.resize( |
|
sample['mask'].astype(np.float32), |
|
tuple(shape[::-1]), |
|
interpolation=cv2.INTER_NEAREST, |
|
) |
|
sample['mask'] = sample['mask'].astype(bool) |
|
|
|
return tuple(shape) |
|
|
|
|
|
class Resize(object): |
|
"""Resize sample to given size (width, height). |
|
""" |
|
def __init__( |
|
self, |
|
width, |
|
height, |
|
resize_target=True, |
|
keep_aspect_ratio=False, |
|
ensure_multiple_of=1, |
|
resize_method='lower_bound', |
|
image_interpolation_method=cv2.INTER_AREA, |
|
): |
|
"""Init. |
|
|
|
Args: |
|
width (int): desired output width |
|
height (int): desired output height |
|
resize_target (bool, optional): |
|
True: Resize the full sample (image, mask, target). |
|
False: Resize image only. |
|
Defaults to True. |
|
keep_aspect_ratio (bool, optional): |
|
True: Keep the aspect ratio of the input sample. |
|
Output sample might not have the given width and height, and |
|
resize behaviour depends on the parameter 'resize_method'. |
|
Defaults to False. |
|
ensure_multiple_of (int, optional): |
|
Output width and height is constrained to be multiple of this parameter. |
|
Defaults to 1. |
|
resize_method (str, optional): |
|
"lower_bound": Output will be at least as large as the given size. |
|
"upper_bound": Output will be at max as large as the given size. " |
|
"(Output size might be smaller than given size.)" |
|
"minimal": Scale as least as possible. (Output size might be smaller than given size.) |
|
Defaults to "lower_bound". |
|
""" |
|
self.__width = width |
|
self.__height = height |
|
|
|
self.__resize_target = resize_target |
|
self.__keep_aspect_ratio = keep_aspect_ratio |
|
self.__multiple_of = ensure_multiple_of |
|
self.__resize_method = resize_method |
|
self.__image_interpolation_method = image_interpolation_method |
|
|
|
def constrain_to_multiple_of(self, x, min_val=0, max_val=None): |
|
y = (np.round(x / self.__multiple_of) * self.__multiple_of).astype(int) |
|
|
|
if max_val is not None and y > max_val: |
|
y = (np.floor(x / self.__multiple_of) * |
|
self.__multiple_of).astype(int) |
|
|
|
if y < min_val: |
|
y = (np.ceil(x / self.__multiple_of) * |
|
self.__multiple_of).astype(int) |
|
|
|
return y |
|
|
|
def get_size(self, width, height): |
|
|
|
scale_height = self.__height / height |
|
scale_width = self.__width / width |
|
|
|
if self.__keep_aspect_ratio: |
|
if self.__resize_method == 'lower_bound': |
|
|
|
if scale_width > scale_height: |
|
|
|
scale_height = scale_width |
|
else: |
|
|
|
scale_width = scale_height |
|
elif self.__resize_method == 'upper_bound': |
|
|
|
if scale_width < scale_height: |
|
|
|
scale_height = scale_width |
|
else: |
|
|
|
scale_width = scale_height |
|
elif self.__resize_method == 'minimal': |
|
|
|
if abs(1 - scale_width) < abs(1 - scale_height): |
|
|
|
scale_height = scale_width |
|
else: |
|
|
|
scale_width = scale_height |
|
else: |
|
raise ValueError( |
|
f'resize_method {self.__resize_method} not implemented') |
|
|
|
if self.__resize_method == 'lower_bound': |
|
new_height = self.constrain_to_multiple_of(scale_height * height, |
|
min_val=self.__height) |
|
new_width = self.constrain_to_multiple_of(scale_width * width, |
|
min_val=self.__width) |
|
elif self.__resize_method == 'upper_bound': |
|
new_height = self.constrain_to_multiple_of(scale_height * height, |
|
max_val=self.__height) |
|
new_width = self.constrain_to_multiple_of(scale_width * width, |
|
max_val=self.__width) |
|
elif self.__resize_method == 'minimal': |
|
new_height = self.constrain_to_multiple_of(scale_height * height) |
|
new_width = self.constrain_to_multiple_of(scale_width * width) |
|
else: |
|
raise ValueError( |
|
f'resize_method {self.__resize_method} not implemented') |
|
|
|
return (new_width, new_height) |
|
|
|
def __call__(self, sample): |
|
width, height = self.get_size(sample['image'].shape[1], |
|
sample['image'].shape[0]) |
|
|
|
|
|
sample['image'] = cv2.resize( |
|
sample['image'], |
|
(width, height), |
|
interpolation=self.__image_interpolation_method, |
|
) |
|
|
|
if self.__resize_target: |
|
if 'disparity' in sample: |
|
sample['disparity'] = cv2.resize( |
|
sample['disparity'], |
|
(width, height), |
|
interpolation=cv2.INTER_NEAREST, |
|
) |
|
|
|
if 'depth' in sample: |
|
sample['depth'] = cv2.resize(sample['depth'], (width, height), |
|
interpolation=cv2.INTER_NEAREST) |
|
|
|
sample['mask'] = cv2.resize( |
|
sample['mask'].astype(np.float32), |
|
(width, height), |
|
interpolation=cv2.INTER_NEAREST, |
|
) |
|
sample['mask'] = sample['mask'].astype(bool) |
|
|
|
return sample |
|
|
|
|
|
class NormalizeImage(object): |
|
"""Normlize image by given mean and std. |
|
""" |
|
def __init__(self, mean, std): |
|
self.__mean = mean |
|
self.__std = std |
|
|
|
def __call__(self, sample): |
|
sample['image'] = (sample['image'] - self.__mean) / self.__std |
|
|
|
return sample |
|
|
|
|
|
class PrepareForNet(object): |
|
"""Prepare sample for usage as network input. |
|
""" |
|
def __init__(self): |
|
pass |
|
|
|
def __call__(self, sample): |
|
image = np.transpose(sample['image'], (2, 0, 1)) |
|
sample['image'] = np.ascontiguousarray(image).astype(np.float32) |
|
|
|
if 'mask' in sample: |
|
sample['mask'] = sample['mask'].astype(np.float32) |
|
sample['mask'] = np.ascontiguousarray(sample['mask']) |
|
|
|
if 'disparity' in sample: |
|
disparity = sample['disparity'].astype(np.float32) |
|
sample['disparity'] = np.ascontiguousarray(disparity) |
|
|
|
if 'depth' in sample: |
|
depth = sample['depth'].astype(np.float32) |
|
sample['depth'] = np.ascontiguousarray(depth) |
|
|
|
return sample |
|
|