|
|
|
|
|
import torch |
|
import numpy as np |
|
import argparse |
|
|
|
from .utils import convert_to_numpy |
|
|
|
class FlowAnnotator: |
|
def __init__(self, cfg, device=None): |
|
try: |
|
from raft import RAFT |
|
from raft.utils.utils import InputPadder |
|
from raft.utils import flow_viz |
|
except: |
|
import warnings |
|
warnings.warn( |
|
"ignore raft import, please pip install raft package. you can refer to models/VACE-Annotators/flow/raft-1.0.0-py3-none-any.whl") |
|
|
|
params = { |
|
"small": False, |
|
"mixed_precision": False, |
|
"alternate_corr": False |
|
} |
|
params = argparse.Namespace(**params) |
|
pretrained_model = cfg['PRETRAINED_MODEL'] |
|
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu") if device is None else device |
|
self.model = RAFT(params) |
|
self.model.load_state_dict({k.replace('module.', ''): v for k, v in torch.load(pretrained_model, map_location="cpu", weights_only=True).items()}) |
|
self.model = self.model.to(self.device).eval() |
|
self.InputPadder = InputPadder |
|
self.flow_viz = flow_viz |
|
|
|
def forward(self, frames): |
|
|
|
frames = [torch.from_numpy(convert_to_numpy(frame).astype(np.uint8)).permute(2, 0, 1).float()[None].to(self.device) for frame in frames] |
|
flow_up_list, flow_up_vis_list = [], [] |
|
with torch.no_grad(): |
|
for i, (image1, image2) in enumerate(zip(frames[:-1], frames[1:])): |
|
padder = self.InputPadder(image1.shape) |
|
image1, image2 = padder.pad(image1, image2) |
|
flow_low, flow_up = self.model(image1, image2, iters=20, test_mode=True) |
|
flow_up = flow_up[0].permute(1, 2, 0).cpu().numpy() |
|
flow_up_vis = self.flow_viz.flow_to_image(flow_up) |
|
flow_up_list.append(flow_up) |
|
flow_up_vis_list.append(flow_up_vis) |
|
return flow_up_list, flow_up_vis_list |
|
|
|
|
|
class FlowVisAnnotator(FlowAnnotator): |
|
def forward(self, frames): |
|
flow_up_list, flow_up_vis_list = super().forward(frames) |
|
return flow_up_vis_list[:1] + flow_up_vis_list |