File size: 8,051 Bytes
690f890
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
# -*- coding: utf-8 -*-
# Copyright (c) Alibaba, Inc. and its affiliates.
import torch
import torch.cuda.amp as amp
import torch.nn as nn
from diffusers.configuration_utils import register_to_config
from wan.modules.model import WanModel, WanAttentionBlock, sinusoidal_embedding_1d


class VaceWanAttentionBlock(WanAttentionBlock):
    def __init__(
            self,
            cross_attn_type,
            dim,
            ffn_dim,
            num_heads,
            window_size=(-1, -1),
            qk_norm=True,
            cross_attn_norm=False,
            eps=1e-6,
            block_id=0
    ):
        super().__init__(cross_attn_type, dim, ffn_dim, num_heads, window_size, qk_norm, cross_attn_norm, eps)
        self.block_id = block_id
        if block_id == 0:
            self.before_proj = nn.Linear(self.dim, self.dim)
            nn.init.zeros_(self.before_proj.weight)
            nn.init.zeros_(self.before_proj.bias)
        self.after_proj = nn.Linear(self.dim, self.dim)
        nn.init.zeros_(self.after_proj.weight)
        nn.init.zeros_(self.after_proj.bias)

    def forward(self, c, x, **kwargs):
        if self.block_id == 0:
            c = self.before_proj(c) + x
            all_c = []
        else:
            all_c = list(torch.unbind(c))
            c = all_c.pop(-1)
        c = super().forward(c, **kwargs)
        c_skip = self.after_proj(c)
        all_c += [c_skip, c]
        c = torch.stack(all_c)
        return c
    
    
class BaseWanAttentionBlock(WanAttentionBlock):
    def __init__(
        self,
        cross_attn_type,
        dim,
        ffn_dim,
        num_heads,
        window_size=(-1, -1),
        qk_norm=True,
        cross_attn_norm=False,
        eps=1e-6,
        block_id=None
    ):
        super().__init__(cross_attn_type, dim, ffn_dim, num_heads, window_size, qk_norm, cross_attn_norm, eps)
        self.block_id = block_id

    def forward(self, x, hints, context_scale=1.0, **kwargs):
        x = super().forward(x, **kwargs)
        if self.block_id is not None:
            x = x + hints[self.block_id] * context_scale
        return x
    
    
class VaceWanModel(WanModel):
    @register_to_config
    def __init__(self,
                 vace_layers=None,
                 vace_in_dim=None,
                 model_type='t2v',
                 patch_size=(1, 2, 2),
                 text_len=512,
                 in_dim=16,
                 dim=2048,
                 ffn_dim=8192,
                 freq_dim=256,
                 text_dim=4096,
                 out_dim=16,
                 num_heads=16,
                 num_layers=32,
                 window_size=(-1, -1),
                 qk_norm=True,
                 cross_attn_norm=True,
                 eps=1e-6):
        super().__init__(model_type, patch_size, text_len, in_dim, dim, ffn_dim, freq_dim, text_dim, out_dim,
                         num_heads, num_layers, window_size, qk_norm, cross_attn_norm, eps)

        self.vace_layers = [i for i in range(0, self.num_layers, 2)] if vace_layers is None else vace_layers
        self.vace_in_dim = self.in_dim if vace_in_dim is None else vace_in_dim

        assert 0 in self.vace_layers
        self.vace_layers_mapping = {i: n for n, i in enumerate(self.vace_layers)}

        # blocks
        self.blocks = nn.ModuleList([
            BaseWanAttentionBlock('t2v_cross_attn', self.dim, self.ffn_dim, self.num_heads, self.window_size, self.qk_norm,
                                  self.cross_attn_norm, self.eps,
                                  block_id=self.vace_layers_mapping[i] if i in self.vace_layers else None)
            for i in range(self.num_layers)
        ])

        # vace blocks
        self.vace_blocks = nn.ModuleList([
            VaceWanAttentionBlock('t2v_cross_attn', self.dim, self.ffn_dim, self.num_heads, self.window_size, self.qk_norm,
                                     self.cross_attn_norm, self.eps, block_id=i)
            for i in self.vace_layers
        ])

        # vace patch embeddings
        self.vace_patch_embedding = nn.Conv3d(
            self.vace_in_dim, self.dim, kernel_size=self.patch_size, stride=self.patch_size
        )

    def forward_vace(
        self,
        x,
        vace_context,
        seq_len,
        kwargs
    ):
        # embeddings
        c = [self.vace_patch_embedding(u.unsqueeze(0)) for u in vace_context]
        c = [u.flatten(2).transpose(1, 2) for u in c]
        c = torch.cat([
            torch.cat([u, u.new_zeros(1, seq_len - u.size(1), u.size(2))],
                      dim=1) for u in c
        ])

        # arguments
        new_kwargs = dict(x=x)
        new_kwargs.update(kwargs)

        for block in self.vace_blocks:
            c = block(c, **new_kwargs)
        hints = torch.unbind(c)[:-1]
        return hints

    def forward(
        self,
        x,
        t,
        vace_context,
        context,
        seq_len,
        vace_context_scale=1.0,
        clip_fea=None,
        y=None,
    ):
        r"""
        Forward pass through the diffusion model

        Args:
            x (List[Tensor]):
                List of input video tensors, each with shape [C_in, F, H, W]
            t (Tensor):
                Diffusion timesteps tensor of shape [B]
            context (List[Tensor]):
                List of text embeddings each with shape [L, C]
            seq_len (`int`):
                Maximum sequence length for positional encoding
            clip_fea (Tensor, *optional*):
                CLIP image features for image-to-video mode
            y (List[Tensor], *optional*):
                Conditional video inputs for image-to-video mode, same shape as x

        Returns:
            List[Tensor]:
                List of denoised video tensors with original input shapes [C_out, F, H / 8, W / 8]
        """
        # if self.model_type == 'i2v':
        #     assert clip_fea is not None and y is not None
        # params
        device = self.patch_embedding.weight.device
        if self.freqs.device != device:
            self.freqs = self.freqs.to(device)

        # if y is not None:
        #     x = [torch.cat([u, v], dim=0) for u, v in zip(x, y)]

        # embeddings
        x = [self.patch_embedding(u.unsqueeze(0)) for u in x]
        grid_sizes = torch.stack(
            [torch.tensor(u.shape[2:], dtype=torch.long) for u in x])
        x = [u.flatten(2).transpose(1, 2) for u in x]
        seq_lens = torch.tensor([u.size(1) for u in x], dtype=torch.long)
        assert seq_lens.max() <= seq_len
        x = torch.cat([
            torch.cat([u, u.new_zeros(1, seq_len - u.size(1), u.size(2))],
                      dim=1) for u in x
        ])

        # time embeddings
        with amp.autocast(dtype=torch.float32):
            e = self.time_embedding(
                sinusoidal_embedding_1d(self.freq_dim, t).float())
            e0 = self.time_projection(e).unflatten(1, (6, self.dim))
            assert e.dtype == torch.float32 and e0.dtype == torch.float32

        # context
        context_lens = None
        context = self.text_embedding(
            torch.stack([
                torch.cat(
                    [u, u.new_zeros(self.text_len - u.size(0), u.size(1))])
                for u in context
            ]))

        # if clip_fea is not None:
        #     context_clip = self.img_emb(clip_fea)  # bs x 257 x dim
        #     context = torch.concat([context_clip, context], dim=1)

        # arguments
        kwargs = dict(
            e=e0,
            seq_lens=seq_lens,
            grid_sizes=grid_sizes,
            freqs=self.freqs,
            context=context,
            context_lens=context_lens)

        hints = self.forward_vace(x, vace_context, seq_len, kwargs)
        kwargs['hints'] = hints
        kwargs['context_scale'] = vace_context_scale

        for block in self.blocks:
            x = block(x, **kwargs)

        # head
        x = self.head(x, e)

        # unpatchify
        x = self.unpatchify(x, grid_sizes)
        return [u.float() for u in x]