File size: 11,487 Bytes
690f890
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
# -*- coding: utf-8 -*-
# Copyright (c) Alibaba, Inc. and its affiliates.
import numpy as np
from PIL import Image
import torch
import torch.nn.functional as F
import torchvision.transforms.functional as TF


class VaceImageProcessor(object):
    def __init__(self, downsample=None, seq_len=None):
        self.downsample = downsample
        self.seq_len = seq_len

    def _pillow_convert(self, image, cvt_type='RGB'):
        if image.mode != cvt_type:
            if image.mode == 'P':
                image = image.convert(f'{cvt_type}A')
            if image.mode == f'{cvt_type}A':
                bg = Image.new(cvt_type,
                               size=(image.width, image.height),
                               color=(255, 255, 255))
                bg.paste(image, (0, 0), mask=image)
                image = bg
            else:
                image = image.convert(cvt_type)
        return image

    def _load_image(self, img_path):
        if img_path is None or img_path == '':
            return None
        img = Image.open(img_path)
        img = self._pillow_convert(img)
        return img

    def _resize_crop(self, img, oh, ow, normalize=True):
        """
        Resize, center crop, convert to tensor, and normalize.
        """
        # resize and crop
        iw, ih = img.size
        if iw != ow or ih != oh:
            # resize
            scale = max(ow / iw, oh / ih)
            img = img.resize(
                (round(scale * iw), round(scale * ih)),
                resample=Image.Resampling.LANCZOS
            )
            assert img.width >= ow and img.height >= oh

            # center crop
            x1 = (img.width - ow) // 2
            y1 = (img.height - oh) // 2
            img = img.crop((x1, y1, x1 + ow, y1 + oh))

        # normalize
        if normalize:
            img = TF.to_tensor(img).sub_(0.5).div_(0.5).unsqueeze(1)
        return img
    
    def _image_preprocess(self, img, oh, ow, normalize=True, **kwargs):
        return self._resize_crop(img, oh, ow, normalize)

    def load_image(self, data_key, **kwargs):
        return self.load_image_batch(data_key, **kwargs)

    def load_image_pair(self, data_key, data_key2, **kwargs):
        return self.load_image_batch(data_key, data_key2, **kwargs)

    def load_image_batch(self, *data_key_batch, normalize=True, seq_len=None, **kwargs):
        seq_len = self.seq_len if seq_len is None else seq_len
        imgs = []
        for data_key in data_key_batch:
            img = self._load_image(data_key)
            imgs.append(img)
        w, h = imgs[0].size
        dh, dw = self.downsample[1:]

        # compute output size
        scale = min(1., np.sqrt(seq_len / ((h / dh) * (w / dw))))
        oh = int(h * scale) // dh * dh
        ow = int(w * scale) // dw * dw
        assert (oh // dh) * (ow // dw) <= seq_len
        imgs = [self._image_preprocess(img, oh, ow, normalize) for img in imgs]
        return *imgs, (oh, ow)


class VaceVideoProcessor(object):
    def __init__(self, downsample, min_area, max_area, min_fps, max_fps, zero_start, seq_len, keep_last, **kwargs):
        self.downsample = downsample
        self.min_area = min_area
        self.max_area = max_area
        self.min_fps = min_fps
        self.max_fps = max_fps
        self.zero_start = zero_start
        self.keep_last = keep_last
        self.seq_len = seq_len
        assert seq_len >= min_area / (self.downsample[1] * self.downsample[2])

    @staticmethod
    def resize_crop(video: torch.Tensor, oh: int, ow: int):
        """
        Resize, center crop and normalize for decord loaded video (torch.Tensor type)

        Parameters:
          video - video to process (torch.Tensor): Tensor from `reader.get_batch(frame_ids)`, in shape of (T, H, W, C)
          oh - target height (int)
          ow - target width (int)

        Returns:
            The processed video (torch.Tensor): Normalized tensor range [-1, 1], in shape of (C, T, H, W)

        Raises:
        """
        # permute ([t, h, w, c] -> [t, c, h, w])
        video = video.permute(0, 3, 1, 2)

        # resize and crop
        ih, iw = video.shape[2:]
        if ih != oh or iw != ow:
            # resize
            scale = max(ow / iw, oh / ih)
            video = F.interpolate(
                video,
                size=(round(scale * ih), round(scale * iw)),
                mode='bicubic',
                antialias=True
            )
            assert video.size(3) >= ow and video.size(2) >= oh

            # center crop
            x1 = (video.size(3) - ow) // 2
            y1 = (video.size(2) - oh) // 2
            video = video[:, :, y1:y1 + oh, x1:x1 + ow]

        # permute ([t, c, h, w] -> [c, t, h, w]) and normalize
        video = video.transpose(0, 1).float().div_(127.5).sub_(1.)
        return video

    def _video_preprocess(self, video, oh, ow):
        return self.resize_crop(video, oh, ow)

    def _get_frameid_bbox_default(self, fps, frame_timestamps, h, w, crop_box, rng):
        target_fps = min(fps, self.max_fps)
        duration = frame_timestamps[-1].mean()
        x1, x2, y1, y2 = [0, w, 0, h] if crop_box is None else crop_box
        h, w = y2 - y1, x2 - x1
        ratio = h / w
        df, dh, dw = self.downsample

        # min/max area of the [latent video]
        min_area_z = self.min_area / (dh * dw)
        max_area_z = min(self.seq_len, self.max_area / (dh * dw), (h // dh) * (w // dw))

        # sample a frame number of the [latent video]
        rand_area_z = np.square(np.power(2, rng.uniform(
            np.log2(np.sqrt(min_area_z)),
            np.log2(np.sqrt(max_area_z))
        )))
        of = min(
            (int(duration * target_fps) - 1) // df + 1,
            int(self.seq_len / rand_area_z)
        )

        # deduce target shape of the [latent video]
        target_area_z = min(max_area_z, int(self.seq_len / of))
        oh = round(np.sqrt(target_area_z * ratio))
        ow = int(target_area_z / oh)
        of = (of - 1) * df + 1
        oh *= dh
        ow *= dw

        # sample frame ids
        target_duration = of / target_fps
        begin = 0. if self.zero_start else rng.uniform(0, duration - target_duration)
        timestamps = np.linspace(begin, begin + target_duration, of)
        frame_ids = np.argmax(np.logical_and(
            timestamps[:, None] >= frame_timestamps[None, :, 0],
            timestamps[:, None] < frame_timestamps[None, :, 1]
        ), axis=1).tolist()
        return frame_ids, (x1, x2, y1, y2), (oh, ow), target_fps

    def _get_frameid_bbox_adjust_last(self, fps, frame_timestamps, h, w, crop_box, rng):
        duration = frame_timestamps[-1].mean()
        x1, x2, y1, y2 = [0, w, 0, h] if crop_box is None else crop_box
        h, w = y2 - y1, x2 - x1
        ratio = h / w
        df, dh, dw = self.downsample

        # min/max area of the [latent video]
        min_area_z = self.min_area / (dh * dw)
        max_area_z = min(self.seq_len, self.max_area / (dh * dw), (h // dh) * (w // dw))

        # sample a frame number of the [latent video]
        rand_area_z = np.square(np.power(2, rng.uniform(
            np.log2(np.sqrt(min_area_z)),
            np.log2(np.sqrt(max_area_z))
        )))

        of = min(
            (len(frame_timestamps) - 1) // df + 1,
            int(self.seq_len / rand_area_z)
        )

        # deduce target shape of the [latent video]
        target_area_z = min(max_area_z, int(self.seq_len / of))
        oh = round(np.sqrt(target_area_z * ratio))
        ow = int(target_area_z / oh)
        of = (of - 1) * df + 1
        oh *= dh
        ow *= dw

        # sample frame ids
        target_duration = duration
        target_fps = of / target_duration
        timestamps = np.linspace(0., target_duration, of)
        frame_ids = np.argmax(np.logical_and(
            timestamps[:, None] >= frame_timestamps[None, :, 0],
            timestamps[:, None] <= frame_timestamps[None, :, 1]
        ), axis=1).tolist()
        # print(oh, ow, of, target_duration, target_fps, len(frame_timestamps), len(frame_ids))
        return frame_ids, (x1, x2, y1, y2), (oh, ow), target_fps


    def _get_frameid_bbox(self, fps, frame_timestamps, h, w, crop_box, rng):
        if self.keep_last:
            return self._get_frameid_bbox_adjust_last(fps, frame_timestamps, h, w, crop_box, rng)
        else:
            return self._get_frameid_bbox_default(fps, frame_timestamps, h, w, crop_box, rng)

    def load_video(self, data_key, crop_box=None, seed=2024, **kwargs):
        return self.load_video_batch(data_key, crop_box=crop_box, seed=seed, **kwargs)

    def load_video_pair(self, data_key, data_key2, crop_box=None, seed=2024, **kwargs):
        return self.load_video_batch(data_key, data_key2, crop_box=crop_box, seed=seed, **kwargs)

    def load_video_batch(self, *data_key_batch, crop_box=None, seed=2024, **kwargs):
        rng = np.random.default_rng(seed + hash(data_key_batch[0]) % 10000)
        # read video
        import decord
        decord.bridge.set_bridge('torch')
        readers = []
        for data_k in data_key_batch:
            reader = decord.VideoReader(data_k)
            readers.append(reader)

        fps = readers[0].get_avg_fps()
        length = min([len(r) for r in readers])
        frame_timestamps = [readers[0].get_frame_timestamp(i) for i in range(length)]
        frame_timestamps = np.array(frame_timestamps, dtype=np.float32)
        h, w = readers[0].next().shape[:2]
        frame_ids, (x1, x2, y1, y2), (oh, ow), fps = self._get_frameid_bbox(fps, frame_timestamps, h, w, crop_box, rng)

        # preprocess video
        videos = [reader.get_batch(frame_ids)[:, y1:y2, x1:x2, :] for reader in readers]
        videos = [self._video_preprocess(video, oh, ow) for video in videos]
        return *videos, frame_ids, (oh, ow), fps
        # return videos if len(videos) > 1 else videos[0]


def prepare_source(src_video, src_mask, src_ref_images, num_frames, image_size, device):
    for i, (sub_src_video, sub_src_mask) in enumerate(zip(src_video, src_mask)):
        if sub_src_video is None and sub_src_mask is None:
            src_video[i] = torch.zeros((3, num_frames, image_size[0], image_size[1]), device=device)
            src_mask[i] = torch.ones((1, num_frames, image_size[0], image_size[1]), device=device)
    for i, ref_images in enumerate(src_ref_images):
        if ref_images is not None:
            for j, ref_img in enumerate(ref_images):
                if ref_img is not None and ref_img.shape[-2:] != image_size:
                    canvas_height, canvas_width = image_size
                    ref_height, ref_width = ref_img.shape[-2:]
                    white_canvas = torch.ones((3, 1, canvas_height, canvas_width), device=device) # [-1, 1]
                    scale = min(canvas_height / ref_height, canvas_width / ref_width)
                    new_height = int(ref_height * scale)
                    new_width = int(ref_width * scale)
                    resized_image = F.interpolate(ref_img.squeeze(1).unsqueeze(0), size=(new_height, new_width), mode='bilinear', align_corners=False).squeeze(0).unsqueeze(1)
                    top = (canvas_height - new_height) // 2
                    left = (canvas_width - new_width) // 2
                    white_canvas[:, :, top:top + new_height, left:left + new_width] = resized_image
                    src_ref_images[i][j] = white_canvas
    return src_video, src_mask, src_ref_images