File size: 7,403 Bytes
690f890
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
# -*- coding: utf-8 -*-
# Copyright (c) Alibaba, Inc. and its affiliates.
from pathlib import Path

import torch
from transformers import T5EncoderModel, T5Tokenizer

from ltx_video.models.autoencoders.causal_video_autoencoder import (
    CausalVideoAutoencoder,
)
from ltx_video.models.transformers.symmetric_patchifier import SymmetricPatchifier
from ltx_video.schedulers.rf import RectifiedFlowScheduler
from ltx_video.utils.conditioning_method import ConditioningMethod
from ltx_video.utils.skip_layer_strategy import SkipLayerStrategy

from .models.transformers.transformer3d import VaceTransformer3DModel
from .pipelines.pipeline_ltx_video import VaceLTXVideoPipeline
from ..utils.preprocessor import VaceImageProcessor, VaceVideoProcessor



class LTXVace():
    def __init__(self, ckpt_path, text_encoder_path, precision='bfloat16', stg_skip_layers="19", stg_mode="stg_a", offload_to_cpu=False):
        self.precision = precision
        self.offload_to_cpu = offload_to_cpu
        ckpt_path = Path(ckpt_path)
        vae = CausalVideoAutoencoder.from_pretrained(ckpt_path)
        transformer = VaceTransformer3DModel.from_pretrained(ckpt_path)
        scheduler = RectifiedFlowScheduler.from_pretrained(ckpt_path)

        text_encoder = T5EncoderModel.from_pretrained(text_encoder_path, subfolder="text_encoder")
        patchifier = SymmetricPatchifier(patch_size=1)
        tokenizer = T5Tokenizer.from_pretrained(text_encoder_path, subfolder="tokenizer")

        if torch.cuda.is_available():
            transformer = transformer.cuda()
            vae = vae.cuda()
            text_encoder = text_encoder.cuda()

        vae = vae.to(torch.bfloat16)
        if precision == "bfloat16" and transformer.dtype != torch.bfloat16:
            transformer = transformer.to(torch.bfloat16)
        text_encoder = text_encoder.to(torch.bfloat16)

        # Set spatiotemporal guidance
        self.skip_block_list = [int(x.strip()) for x in stg_skip_layers.split(",")]
        self.skip_layer_strategy = (
            SkipLayerStrategy.Attention
            if stg_mode.lower() == "stg_a"
            else SkipLayerStrategy.Residual
        )

        # Use submodels for the pipeline
        submodel_dict = {
            "transformer": transformer,
            "patchifier": patchifier,
            "text_encoder": text_encoder,
            "tokenizer": tokenizer,
            "scheduler": scheduler,
            "vae": vae,
        }

        self.pipeline = VaceLTXVideoPipeline(**submodel_dict)
        if torch.cuda.is_available():
            self.pipeline = self.pipeline.to("cuda")

        self.img_proc = VaceImageProcessor(downsample=[8,32,32], seq_len=384)

        self.vid_proc = VaceVideoProcessor(downsample=[8,32,32],
                                           min_area=512*768,
                                           max_area=512*768,
                                           min_fps=25,
                                           max_fps=25,
                                           seq_len=4992,
                                           zero_start=True,
                                           keep_last=True)


    def generate(self, src_video=None, src_mask=None, src_ref_images=[], prompt="", negative_prompt="", seed=42,
                 num_inference_steps=40, num_images_per_prompt=1, context_scale=1.0, guidance_scale=3, stg_scale=1, stg_rescale=0.7,
                 frame_rate=25, image_cond_noise_scale=0.15, decode_timestep=0.05, decode_noise_scale=0.025,
                 output_height=512, output_width=768, num_frames=97):
        # src_video: [c, t, h, w] / norm [-1, 1]
        # src_mask : [c, t, h, w] / norm [0, 1]
        # src_ref_images : [[c, h, w], [c, h, w], ...] / norm [-1, 1]
        # image_size: (H, W)
        if (src_video is not None and src_video != "") and (src_mask is not None and src_mask != ""):
            src_video, src_mask, frame_ids, image_size, frame_rate = self.vid_proc.load_video_batch(src_video, src_mask)
            if torch.all(src_mask > 0):
                src_mask = torch.ones_like(src_video[:1, :, :, :])
            else:
                # bool_mask = src_mask > 0
                # bool_mask = bool_mask.expand_as(src_video)
                # src_video[bool_mask] = 0
                src_mask = src_mask[:1, :, :, :]
                src_mask = torch.clamp((src_mask + 1) / 2, min=0, max=1)
        elif (src_video is not None and src_video != "") and (src_mask is None or src_mask == ""):
            src_video, frame_ids, image_size, frame_rate = self.vid_proc.load_video_batch(src_video)
            src_mask = torch.ones_like(src_video[:1, :, :, :])
        else:
            output_height, output_width, frame_rate, num_frames = int(output_height), int(output_width), int(frame_rate), int(num_frames)
            frame_ids = list(range(num_frames))
            image_size = (output_height, output_width)
            src_video = torch.zeros((3, num_frames, output_height, output_width))
            src_mask = torch.ones((1, num_frames, output_height, output_width))

        src_ref_images_prelist = src_ref_images
        src_ref_images = []
        for ref_image in src_ref_images_prelist:
            if ref_image != "" and ref_image is not None:
                src_ref_images.append(self.img_proc.load_image(ref_image)[0])


        # Prepare input for the pipeline
        num_frames = len(frame_ids)
        sample = {
            "src_video": [src_video],
            "src_mask": [src_mask],
            "src_ref_images": [src_ref_images],
            "prompt": [prompt],
            "prompt_attention_mask": None,
            "negative_prompt": [negative_prompt],
            "negative_prompt_attention_mask": None,
        }

        generator = torch.Generator(
            device="cuda" if torch.cuda.is_available() else "cpu"
        ).manual_seed(seed)

        output = self.pipeline(
            num_inference_steps=num_inference_steps,
            num_images_per_prompt=num_images_per_prompt,
            context_scale=context_scale,
            guidance_scale=guidance_scale,
            skip_layer_strategy=self.skip_layer_strategy,
            skip_block_list=self.skip_block_list,
            stg_scale=stg_scale,
            do_rescaling=stg_rescale != 1,
            rescaling_scale=stg_rescale,
            generator=generator,
            output_type="pt",
            callback_on_step_end=None,
            height=image_size[0],
            width=image_size[1],
            num_frames=num_frames,
            frame_rate=frame_rate,
            **sample,
            is_video=True,
            vae_per_channel_normalize=True,
            conditioning_method=ConditioningMethod.UNCONDITIONAL,
            image_cond_noise_scale=image_cond_noise_scale,
            decode_timestep=decode_timestep,
            decode_noise_scale=decode_noise_scale,
            mixed_precision=(self.precision in "mixed_precision"),
            offload_to_cpu=self.offload_to_cpu,
        )
        gen_video = output.images[0]
        gen_video = gen_video.to(torch.float32) if gen_video.dtype == torch.bfloat16 else gen_video
        info = output.info

        ret_data = {
            "out_video": gen_video,
            "src_video": src_video,
            "src_mask": src_mask,
            "src_ref_images": src_ref_images,
            "info": info
        }
        return ret_data