File size: 11,229 Bytes
690f890 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 |
# -*- coding: utf-8 -*-
# Copyright (c) Alibaba, Inc. and its affiliates.
import copy
import io
import os
import torch
import numpy as np
import cv2
import imageio
from PIL import Image
import pycocotools.mask as mask_utils
def single_mask_to_rle(mask):
rle = mask_utils.encode(np.array(mask[:, :, None], order="F", dtype="uint8"))[0]
rle["counts"] = rle["counts"].decode("utf-8")
return rle
def single_rle_to_mask(rle):
mask = np.array(mask_utils.decode(rle)).astype(np.uint8)
return mask
def single_mask_to_xyxy(mask):
bbox = np.zeros((4), dtype=int)
rows, cols = np.where(np.array(mask))
if len(rows) > 0 and len(cols) > 0:
x_min, x_max = np.min(cols), np.max(cols)
y_min, y_max = np.min(rows), np.max(rows)
bbox[:] = [x_min, y_min, x_max, y_max]
return bbox.tolist()
def get_mask_box(mask, threshold=255):
locs = np.where(mask >= threshold)
if len(locs) < 1 or locs[0].shape[0] < 1 or locs[1].shape[0] < 1:
return None
left, right = np.min(locs[1]), np.max(locs[1])
top, bottom = np.min(locs[0]), np.max(locs[0])
return [left, top, right, bottom]
def convert_to_numpy(image):
if isinstance(image, Image.Image):
image = np.array(image)
elif isinstance(image, torch.Tensor):
image = image.detach().cpu().numpy()
elif isinstance(image, np.ndarray):
image = image.copy()
else:
raise f'Unsurpport datatype{type(image)}, only surpport np.ndarray, torch.Tensor, Pillow Image.'
return image
def convert_to_pil(image):
if isinstance(image, Image.Image):
image = image.copy()
elif isinstance(image, torch.Tensor):
image = image.detach().cpu().numpy()
image = Image.fromarray(image.astype('uint8'))
elif isinstance(image, np.ndarray):
image = Image.fromarray(image.astype('uint8'))
else:
raise TypeError(f'Unsupported data type {type(image)}, only supports np.ndarray, torch.Tensor, Pillow Image.')
return image
def convert_to_torch(image):
if isinstance(image, Image.Image):
image = torch.from_numpy(np.array(image)).float()
elif isinstance(image, torch.Tensor):
image = image.clone()
elif isinstance(image, np.ndarray):
image = torch.from_numpy(image.copy()).float()
else:
raise f'Unsurpport datatype{type(image)}, only surpport np.ndarray, torch.Tensor, Pillow Image.'
return image
def resize_image(input_image, resolution):
H, W, C = input_image.shape
H = float(H)
W = float(W)
k = float(resolution) / min(H, W)
H *= k
W *= k
H = int(np.round(H / 64.0)) * 64
W = int(np.round(W / 64.0)) * 64
img = cv2.resize(
input_image, (W, H),
interpolation=cv2.INTER_LANCZOS4 if k > 1 else cv2.INTER_AREA)
return img, k
def resize_image_ori(h, w, image, k):
img = cv2.resize(
image, (w, h),
interpolation=cv2.INTER_LANCZOS4 if k > 1 else cv2.INTER_AREA)
return img
def save_one_video(file_path, videos, fps=8, quality=8, macro_block_size=None):
try:
video_writer = imageio.get_writer(file_path, fps=fps, codec='libx264', quality=quality, macro_block_size=macro_block_size)
for frame in videos:
video_writer.append_data(frame)
video_writer.close()
return True
except Exception as e:
print(f"Video save error: {e}")
return False
def save_one_image(file_path, image, use_type='cv2'):
try:
if use_type == 'cv2':
cv2.imwrite(file_path, image)
elif use_type == 'pil':
image = Image.fromarray(image)
image.save(file_path)
else:
raise ValueError(f"Unknown image write type '{use_type}'")
return True
except Exception as e:
print(f"Image save error: {e}")
return False
def read_image(image_path, use_type='cv2', is_rgb=True, info=False):
image = None
width, height = None, None
if use_type == 'cv2':
try:
image = cv2.imread(image_path)
if image is None:
raise Exception("Image not found or path is incorrect.")
if is_rgb:
image = image[..., ::-1]
height, width = image.shape[:2]
except Exception as e:
print(f"OpenCV read error: {e}")
return None
elif use_type == 'pil':
try:
image = Image.open(image_path)
if is_rgb:
image = image.convert('RGB')
width, height = image.size
image = np.array(image)
except Exception as e:
print(f"PIL read error: {e}")
return None
else:
raise ValueError(f"Unknown image read type '{use_type}'")
if info:
return image, width, height
else:
return image
def read_mask(mask_path, use_type='cv2', info=False):
mask = None
width, height = None, None
if use_type == 'cv2':
try:
mask = cv2.imread(mask_path, cv2.IMREAD_GRAYSCALE)
if mask is None:
raise Exception("Mask not found or path is incorrect.")
height, width = mask.shape
except Exception as e:
print(f"OpenCV read error: {e}")
return None
elif use_type == 'pil':
try:
mask = Image.open(mask_path).convert('L')
width, height = mask.size
mask = np.array(mask)
except Exception as e:
print(f"PIL read error: {e}")
return None
else:
raise ValueError(f"Unknown mask read type '{use_type}'")
if info:
return mask, width, height
else:
return mask
def read_video_frames(video_path, use_type='cv2', is_rgb=True, info=False):
frames = []
if use_type == "decord":
import decord
decord.bridge.set_bridge("native")
try:
cap = decord.VideoReader(video_path)
total_frames = len(cap)
fps = cap.get_avg_fps()
height, width, _ = cap[0].shape
frames = [cap[i].asnumpy() for i in range(len(cap))]
except Exception as e:
print(f"Decord read error: {e}")
return None
elif use_type == "cv2":
try:
cap = cv2.VideoCapture(video_path)
fps = cap.get(cv2.CAP_PROP_FPS)
width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
while cap.isOpened():
ret, frame = cap.read()
if not ret:
break
if is_rgb:
frames.append(frame[..., ::-1])
else:
frames.append(frame)
cap.release()
total_frames = len(frames)
except Exception as e:
print(f"OpenCV read error: {e}")
return None
else:
raise ValueError(f"Unknown video type {use_type}")
if info:
return frames, fps, width, height, total_frames
else:
return frames
def read_video_one_frame(video_path, use_type='cv2', is_rgb=True):
image_first = None
if use_type == "decord":
import decord
decord.bridge.set_bridge("native")
try:
cap = decord.VideoReader(video_path)
image_first = cap[0].asnumpy()
except Exception as e:
print(f"Decord read error: {e}")
return None
elif use_type == "cv2":
try:
cap = cv2.VideoCapture(video_path)
ret, frame = cap.read()
if is_rgb:
image_first = frame[..., ::-1]
else:
image_first = frame
cap.release()
except Exception as e:
print(f"OpenCV read error: {e}")
return None
else:
raise ValueError(f"Unknown video type {use_type}")
return image_first
def align_frames(first_frame, last_frame):
h1, w1 = first_frame.shape[:2]
h2, w2 = last_frame.shape[:2]
if (h1, w1) == (h2, w2):
return last_frame
ratio = min(w1 / w2, h1 / h2)
new_w = int(w2 * ratio)
new_h = int(h2 * ratio)
resized = cv2.resize(last_frame, (new_w, new_h), interpolation=cv2.INTER_AREA)
aligned = np.ones((h1, w1, 3), dtype=np.uint8) * 255
x_offset = (w1 - new_w) // 2
y_offset = (h1 - new_h) // 2
aligned[y_offset:y_offset + new_h, x_offset:x_offset + new_w] = resized
return aligned
def save_sam2_video(video_path, video_segments, output_video_path):
cap = cv2.VideoCapture(video_path)
fps = cap.get(cv2.CAP_PROP_FPS)
width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
frames = []
while True:
ret, frame = cap.read()
if not ret:
break
frames.append(frame)
cap.release()
obj_mask_map = {}
for frame_idx, segments in video_segments.items():
for obj_id, info in segments.items():
seg = single_rle_to_mask(info['mask'])[None, ...].squeeze(0).astype(bool)
if obj_id not in obj_mask_map:
obj_mask_map[obj_id] = [seg]
else:
obj_mask_map[obj_id].append(seg)
for obj_id, segs in obj_mask_map.items():
output_obj_video_path = os.path.join(output_video_path, f"{obj_id}.mp4")
fourcc = cv2.VideoWriter_fourcc(*'mp4v') # codec for saving the video
video_writer = cv2.VideoWriter(output_obj_video_path, fourcc, fps, (width * 2, height))
for i, (frame, seg) in enumerate(zip(frames, segs)):
print(obj_id, i, np.sum(seg), seg.shape)
left_frame = frame.copy()
left_frame[seg] = 0
right_frame = frame.copy()
right_frame[~seg] = 255
frame_new = np.concatenate([left_frame, right_frame], axis=1)
video_writer.write(frame_new)
video_writer.release()
def get_annotator_instance(anno_cfg):
import vace.annotators as annotators
anno_cfg = copy.deepcopy(anno_cfg)
class_name = anno_cfg.pop("NAME")
input_params = anno_cfg.pop("INPUTS")
output_params = anno_cfg.pop("OUTPUTS")
anno_ins = getattr(annotators, class_name)(cfg=anno_cfg)
return {"inputs": input_params, "outputs": output_params, "anno_ins": anno_ins}
def get_annotator(config_type='', config_task='', return_dict=True):
anno_dict = None
from vace.configs import VACE_CONFIGS
if config_type in VACE_CONFIGS:
task_configs = VACE_CONFIGS[config_type]
if config_task in task_configs:
anno_dict = get_annotator_instance(task_configs[config_task])
else:
raise ValueError(f"Unknown config task {config_task}")
else:
for cfg_type, cfg_dict in VACE_CONFIGS.items():
if config_task in cfg_dict:
for task_name, task_cfg in cfg_dict[config_task].items():
anno_dict = get_annotator_instance(task_cfg)
else:
raise ValueError(f"Unknown config type {config_type}")
if return_dict:
return anno_dict
else:
return anno_dict['anno_ins']
|