File size: 11,229 Bytes
690f890
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
# -*- coding: utf-8 -*-
# Copyright (c) Alibaba, Inc. and its affiliates.
import copy
import io
import os

import torch
import numpy as np
import cv2
import imageio
from PIL import Image
import pycocotools.mask as mask_utils



def single_mask_to_rle(mask):
    rle = mask_utils.encode(np.array(mask[:, :, None], order="F", dtype="uint8"))[0]
    rle["counts"] = rle["counts"].decode("utf-8")
    return rle

def single_rle_to_mask(rle):
    mask = np.array(mask_utils.decode(rle)).astype(np.uint8)
    return mask

def single_mask_to_xyxy(mask):
    bbox = np.zeros((4), dtype=int)
    rows, cols = np.where(np.array(mask))
    if len(rows) > 0 and len(cols) > 0:
        x_min, x_max = np.min(cols), np.max(cols)
        y_min, y_max = np.min(rows), np.max(rows)
        bbox[:] = [x_min, y_min, x_max, y_max]
    return bbox.tolist()

def get_mask_box(mask, threshold=255):
    locs = np.where(mask >= threshold)
    if len(locs) < 1 or locs[0].shape[0] < 1 or locs[1].shape[0] < 1:
        return None
    left, right = np.min(locs[1]), np.max(locs[1])
    top, bottom = np.min(locs[0]), np.max(locs[0])
    return [left, top, right, bottom]

def convert_to_numpy(image):
    if isinstance(image, Image.Image):
        image = np.array(image)
    elif isinstance(image, torch.Tensor):
        image = image.detach().cpu().numpy()
    elif isinstance(image, np.ndarray):
        image = image.copy()
    else:
        raise f'Unsurpport datatype{type(image)}, only surpport np.ndarray, torch.Tensor, Pillow Image.'
    return image

def convert_to_pil(image):
    if isinstance(image, Image.Image):
        image = image.copy()
    elif isinstance(image, torch.Tensor):
        image = image.detach().cpu().numpy()
        image = Image.fromarray(image.astype('uint8'))
    elif isinstance(image, np.ndarray):
        image = Image.fromarray(image.astype('uint8'))
    else:
        raise TypeError(f'Unsupported data type {type(image)}, only supports np.ndarray, torch.Tensor, Pillow Image.')
    return image

def convert_to_torch(image):
    if isinstance(image, Image.Image):
        image = torch.from_numpy(np.array(image)).float()
    elif isinstance(image, torch.Tensor):
        image = image.clone()
    elif isinstance(image, np.ndarray):
        image = torch.from_numpy(image.copy()).float()
    else:
        raise f'Unsurpport datatype{type(image)}, only surpport np.ndarray, torch.Tensor, Pillow Image.'
    return image

def resize_image(input_image, resolution):
    H, W, C = input_image.shape
    H = float(H)
    W = float(W)
    k = float(resolution) / min(H, W)
    H *= k
    W *= k
    H = int(np.round(H / 64.0)) * 64
    W = int(np.round(W / 64.0)) * 64
    img = cv2.resize(
        input_image, (W, H),
        interpolation=cv2.INTER_LANCZOS4 if k > 1 else cv2.INTER_AREA)
    return img, k


def resize_image_ori(h, w, image, k):
    img = cv2.resize(
        image, (w, h),
        interpolation=cv2.INTER_LANCZOS4 if k > 1 else cv2.INTER_AREA)
    return img


def save_one_video(file_path, videos, fps=8, quality=8, macro_block_size=None):
    try:
        video_writer = imageio.get_writer(file_path, fps=fps, codec='libx264', quality=quality, macro_block_size=macro_block_size)
        for frame in videos:
            video_writer.append_data(frame)
        video_writer.close()
        return True
    except Exception as e:
        print(f"Video save error: {e}")
        return False

def save_one_image(file_path, image, use_type='cv2'):
    try:
        if use_type == 'cv2':
            cv2.imwrite(file_path, image)
        elif use_type == 'pil':
            image = Image.fromarray(image)
            image.save(file_path)
        else:
            raise ValueError(f"Unknown image write type '{use_type}'")
        return True
    except Exception as e:
        print(f"Image save error: {e}")
        return False

def read_image(image_path, use_type='cv2', is_rgb=True, info=False):
    image = None
    width, height = None, None

    if use_type == 'cv2':
        try:
            image = cv2.imread(image_path)
            if image is None:
                raise Exception("Image not found or path is incorrect.")
            if is_rgb:
                image = image[..., ::-1]
            height, width = image.shape[:2]
        except Exception as e:
            print(f"OpenCV read error: {e}")
            return None
    elif use_type == 'pil':
        try:
            image = Image.open(image_path)
            if is_rgb:
                image = image.convert('RGB')
            width, height = image.size
            image = np.array(image)
        except Exception as e:
            print(f"PIL read error: {e}")
            return None
    else:
        raise ValueError(f"Unknown image read type '{use_type}'")

    if info:
        return image, width, height
    else:
        return image


def read_mask(mask_path, use_type='cv2', info=False):
    mask = None
    width, height = None, None

    if use_type == 'cv2':
        try:
            mask = cv2.imread(mask_path, cv2.IMREAD_GRAYSCALE)
            if mask is None:
                raise Exception("Mask not found or path is incorrect.")
            height, width = mask.shape
        except Exception as e:
            print(f"OpenCV read error: {e}")
            return None
    elif use_type == 'pil':
        try:
            mask = Image.open(mask_path).convert('L')
            width, height = mask.size
            mask = np.array(mask)
        except Exception as e:
            print(f"PIL read error: {e}")
            return None
    else:
        raise ValueError(f"Unknown mask read type '{use_type}'")

    if info:
        return mask, width, height
    else:
        return mask

def read_video_frames(video_path, use_type='cv2', is_rgb=True, info=False):
    frames = []
    if use_type == "decord":
        import decord
        decord.bridge.set_bridge("native")
        try:
            cap = decord.VideoReader(video_path)
            total_frames = len(cap)
            fps = cap.get_avg_fps()
            height, width, _ = cap[0].shape
            frames = [cap[i].asnumpy() for i in range(len(cap))]
        except Exception as e:
            print(f"Decord read error: {e}")
            return None
    elif use_type == "cv2":
        try:
            cap = cv2.VideoCapture(video_path)
            fps = cap.get(cv2.CAP_PROP_FPS)
            width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
            height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
            while cap.isOpened():
                ret, frame = cap.read()
                if not ret:
                    break
                if is_rgb:
                    frames.append(frame[..., ::-1])
                else:
                    frames.append(frame)
            cap.release()
            total_frames = len(frames)
        except Exception as e:
            print(f"OpenCV read error: {e}")
            return None
    else:
        raise ValueError(f"Unknown video type {use_type}")
    if info:
        return frames, fps, width, height, total_frames
    else:
        return frames



def read_video_one_frame(video_path, use_type='cv2', is_rgb=True):
    image_first = None
    if use_type == "decord":
        import decord
        decord.bridge.set_bridge("native")
        try:
            cap = decord.VideoReader(video_path)
            image_first = cap[0].asnumpy()
        except Exception as e:
            print(f"Decord read error: {e}")
            return None
    elif use_type == "cv2":
        try:
            cap = cv2.VideoCapture(video_path)
            ret, frame = cap.read()
            if is_rgb:
                image_first = frame[..., ::-1]
            else:
                image_first = frame
            cap.release()
        except Exception as e:
            print(f"OpenCV read error: {e}")
            return None
    else:
        raise ValueError(f"Unknown video type {use_type}")
    return image_first


def align_frames(first_frame, last_frame):
    h1, w1 = first_frame.shape[:2]
    h2, w2 = last_frame.shape[:2]
    if (h1, w1) == (h2, w2):
        return last_frame
    ratio = min(w1 / w2, h1 / h2)
    new_w = int(w2 * ratio)
    new_h = int(h2 * ratio)
    resized = cv2.resize(last_frame, (new_w, new_h), interpolation=cv2.INTER_AREA)
    aligned = np.ones((h1, w1, 3), dtype=np.uint8) * 255
    x_offset = (w1 - new_w) // 2
    y_offset = (h1 - new_h) // 2
    aligned[y_offset:y_offset + new_h, x_offset:x_offset + new_w] = resized
    return aligned


def save_sam2_video(video_path, video_segments, output_video_path):
    cap = cv2.VideoCapture(video_path)
    fps = cap.get(cv2.CAP_PROP_FPS)
    width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
    height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
    frames = []
    while True:
        ret, frame = cap.read()
        if not ret:
            break
        frames.append(frame)
    cap.release()

    obj_mask_map = {}
    for frame_idx, segments in video_segments.items():
        for obj_id, info in segments.items():
            seg = single_rle_to_mask(info['mask'])[None, ...].squeeze(0).astype(bool)
            if obj_id not in obj_mask_map:
                obj_mask_map[obj_id] = [seg]
            else:
                obj_mask_map[obj_id].append(seg)

    for obj_id, segs in obj_mask_map.items():
        output_obj_video_path = os.path.join(output_video_path, f"{obj_id}.mp4")
        fourcc = cv2.VideoWriter_fourcc(*'mp4v')  # codec for saving the video
        video_writer = cv2.VideoWriter(output_obj_video_path, fourcc, fps, (width * 2, height))

        for i, (frame, seg) in enumerate(zip(frames, segs)):
            print(obj_id, i, np.sum(seg), seg.shape)
            left_frame = frame.copy()
            left_frame[seg] = 0
            right_frame = frame.copy()
            right_frame[~seg] = 255
            frame_new = np.concatenate([left_frame, right_frame], axis=1)
            video_writer.write(frame_new)
        video_writer.release()


def get_annotator_instance(anno_cfg):
    import vace.annotators as annotators
    anno_cfg = copy.deepcopy(anno_cfg)
    class_name = anno_cfg.pop("NAME")
    input_params = anno_cfg.pop("INPUTS")
    output_params = anno_cfg.pop("OUTPUTS")
    anno_ins = getattr(annotators, class_name)(cfg=anno_cfg)
    return {"inputs": input_params, "outputs": output_params, "anno_ins": anno_ins}

def get_annotator(config_type='', config_task='', return_dict=True):
    anno_dict = None
    from vace.configs import VACE_CONFIGS
    if config_type in VACE_CONFIGS:
        task_configs = VACE_CONFIGS[config_type]
        if config_task in task_configs:
            anno_dict = get_annotator_instance(task_configs[config_task])
        else:
            raise ValueError(f"Unknown config task {config_task}")
    else:
        for cfg_type, cfg_dict in VACE_CONFIGS.items():
            if config_task in cfg_dict:
                for task_name, task_cfg in cfg_dict[config_task].items():
                    anno_dict = get_annotator_instance(task_cfg)
            else:
                raise ValueError(f"Unknown config type {config_type}")
    if return_dict:
        return anno_dict
    else:
        return anno_dict['anno_ins']