File size: 4,531 Bytes
690f890
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
# -*- coding: utf-8 -*-
# Copyright (c) Alibaba, Inc. and its affiliates.
import numpy as np
import torch
import torch.nn as nn
from einops import rearrange

from .utils import convert_to_torch

norm_layer = nn.InstanceNorm2d


class ResidualBlock(nn.Module):
    def __init__(self, in_features):
        super(ResidualBlock, self).__init__()

        conv_block = [
            nn.ReflectionPad2d(1),
            nn.Conv2d(in_features, in_features, 3),
            norm_layer(in_features),
            nn.ReLU(inplace=True),
            nn.ReflectionPad2d(1),
            nn.Conv2d(in_features, in_features, 3),
            norm_layer(in_features)
        ]

        self.conv_block = nn.Sequential(*conv_block)

    def forward(self, x):
        return x + self.conv_block(x)


class ContourInference(nn.Module):
    def __init__(self, input_nc, output_nc, n_residual_blocks=9, sigmoid=True):
        super(ContourInference, self).__init__()

        # Initial convolution block
        model0 = [
            nn.ReflectionPad2d(3),
            nn.Conv2d(input_nc, 64, 7),
            norm_layer(64),
            nn.ReLU(inplace=True)
        ]
        self.model0 = nn.Sequential(*model0)

        # Downsampling
        model1 = []
        in_features = 64
        out_features = in_features * 2
        for _ in range(2):
            model1 += [
                nn.Conv2d(in_features, out_features, 3, stride=2, padding=1),
                norm_layer(out_features),
                nn.ReLU(inplace=True)
            ]
            in_features = out_features
            out_features = in_features * 2
        self.model1 = nn.Sequential(*model1)

        model2 = []
        # Residual blocks
        for _ in range(n_residual_blocks):
            model2 += [ResidualBlock(in_features)]
        self.model2 = nn.Sequential(*model2)

        # Upsampling
        model3 = []
        out_features = in_features // 2
        for _ in range(2):
            model3 += [
                nn.ConvTranspose2d(in_features,
                                   out_features,
                                   3,
                                   stride=2,
                                   padding=1,
                                   output_padding=1),
                norm_layer(out_features),
                nn.ReLU(inplace=True)
            ]
            in_features = out_features
            out_features = in_features // 2
        self.model3 = nn.Sequential(*model3)

        # Output layer
        model4 = [nn.ReflectionPad2d(3), nn.Conv2d(64, output_nc, 7)]
        if sigmoid:
            model4 += [nn.Sigmoid()]

        self.model4 = nn.Sequential(*model4)

    def forward(self, x, cond=None):
        out = self.model0(x)
        out = self.model1(out)
        out = self.model2(out)
        out = self.model3(out)
        out = self.model4(out)

        return out


class ScribbleAnnotator:
    def __init__(self, cfg, device=None):
        input_nc = cfg.get('INPUT_NC', 3)
        output_nc = cfg.get('OUTPUT_NC', 1)
        n_residual_blocks = cfg.get('N_RESIDUAL_BLOCKS', 3)
        sigmoid = cfg.get('SIGMOID', True)
        pretrained_model = cfg['PRETRAINED_MODEL']
        self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu") if device is None else device
        self.model = ContourInference(input_nc, output_nc, n_residual_blocks,
                                      sigmoid)
        self.model.load_state_dict(torch.load(pretrained_model, weights_only=True))
        self.model = self.model.eval().requires_grad_(False).to(self.device)

    @torch.no_grad()
    @torch.inference_mode()
    @torch.autocast('cuda', enabled=False)
    def forward(self, image):
        is_batch = False if len(image.shape) == 3 else True
        image = convert_to_torch(image)
        if len(image.shape) == 3:
            image = rearrange(image, 'h w c -> 1 c h w')
        image = image.float().div(255).to(self.device)
        contour_map = self.model(image)
        contour_map = (contour_map.squeeze(dim=1) * 255.0).clip(
            0, 255).cpu().numpy().astype(np.uint8)
        contour_map = contour_map[..., None].repeat(3, -1)
        if not is_batch:
            contour_map = contour_map.squeeze()
        return contour_map


class ScribbleVideoAnnotator(ScribbleAnnotator):
    def forward(self, frames):
        ret_frames = []
        for frame in frames:
            anno_frame = super().forward(np.array(frame))
            ret_frames.append(anno_frame)
        return ret_frames