File size: 6,943 Bytes
690f890
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
# -*- coding: utf-8 -*-
# Copyright (c) Alibaba, Inc. and its affiliates.

import cv2
import numpy as np

from .utils import convert_to_numpy


class LayoutBboxAnnotator:
    def __init__(self, cfg, device=None):
        self.bg_color = cfg.get('BG_COLOR', [255, 255, 255])
        self.box_color = cfg.get('BOX_COLOR', [0, 0, 0])
        self.frame_size = cfg.get('FRAME_SIZE', [720, 1280])  # [H, W]
        self.num_frames = cfg.get('NUM_FRAMES', 81)
        ram_tag_color_path = cfg.get('RAM_TAG_COLOR_PATH', None)
        self.color_dict = {'default': tuple(self.box_color)}
        if ram_tag_color_path is not None:
            lines = [id_name_color.strip().split('#;#') for id_name_color in open(ram_tag_color_path).readlines()]
            self.color_dict.update({id_name_color[1]: tuple(eval(id_name_color[2])) for id_name_color in lines})

    def forward(self, bbox, frame_size=None, num_frames=None, label=None, color=None):
        frame_size = frame_size if frame_size is not None else self.frame_size
        num_frames = num_frames if num_frames is not None else self.num_frames
        assert len(bbox) == 2, 'bbox should be a list of two elements (start_bbox & end_bbox)'
        # frame_size = [H, W]
        # bbox = [x1, y1, x2, y2]
        label = label[0] if label is not None and isinstance(label, list) else label
        if label is not None and label in self.color_dict:
            box_color = self.color_dict[label]
        elif color is not None:
            box_color = color
        else:
            box_color = self.color_dict['default']
        start_bbox, end_bbox = bbox
        start_bbox = [start_bbox[0], start_bbox[1], start_bbox[2] - start_bbox[0], start_bbox[3] - start_bbox[1]]
        start_bbox = np.array(start_bbox, dtype=np.float32)
        end_bbox = [end_bbox[0], end_bbox[1], end_bbox[2] - end_bbox[0], end_bbox[3] - end_bbox[1]]
        end_bbox = np.array(end_bbox, dtype=np.float32)
        bbox_increment = (end_bbox - start_bbox) / num_frames
        ret_frames = []
        for frame_idx in range(num_frames):
            frame = np.zeros((frame_size[0], frame_size[1], 3), dtype=np.uint8)
            frame[:] = self.bg_color
            current_bbox = start_bbox + bbox_increment * frame_idx
            current_bbox = current_bbox.astype(int)
            x, y, w, h = current_bbox
            cv2.rectangle(frame, (x, y), (x + w, y + h), box_color, 2)
            ret_frames.append(frame[..., ::-1])
        return ret_frames




class LayoutMaskAnnotator:
    def __init__(self, cfg, device=None):
        self.use_aug = cfg.get('USE_AUG', False)
        self.bg_color = cfg.get('BG_COLOR', [255, 255, 255])
        self.box_color = cfg.get('BOX_COLOR', [0, 0, 0])
        ram_tag_color_path = cfg.get('RAM_TAG_COLOR_PATH', None)
        self.color_dict = {'default': tuple(self.box_color)}
        if ram_tag_color_path is not None:
            lines = [id_name_color.strip().split('#;#') for id_name_color in open(ram_tag_color_path).readlines()]
            self.color_dict.update({id_name_color[1]: tuple(eval(id_name_color[2])) for id_name_color in lines})
        if self.use_aug:
            from .maskaug import MaskAugAnnotator
            self.maskaug_anno = MaskAugAnnotator(cfg={})


    def find_contours(self, mask):
        contours, hier = cv2.findContours(mask, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
        return contours

    def draw_contours(self, canvas, contour, color):
        canvas = np.ascontiguousarray(canvas, dtype=np.uint8)
        canvas = cv2.drawContours(canvas, contour, -1, color, thickness=3)
        return canvas

    def forward(self, mask=None, color=None, label=None, mask_cfg=None):
        if not isinstance(mask, list):
            is_batch = False
            mask = [mask]
        else:
            is_batch = True

        if label is not None and label in self.color_dict:
            color = self.color_dict[label]
        elif color is not None:
            color = color
        else:
            color = self.color_dict['default']

        ret_data = []
        for sub_mask in mask:
            sub_mask = convert_to_numpy(sub_mask)
            if self.use_aug:
                sub_mask = self.maskaug_anno.forward(sub_mask, mask_cfg)
            canvas = np.ones((sub_mask.shape[0], sub_mask.shape[1], 3)) * 255
            contour = self.find_contours(sub_mask)
            frame = self.draw_contours(canvas, contour, color)
            ret_data.append(frame)

        if is_batch:
            return ret_data
        else:
            return ret_data[0]




class LayoutTrackAnnotator:
    def __init__(self, cfg, device=None):
        self.use_aug = cfg.get('USE_AUG', False)
        self.bg_color = cfg.get('BG_COLOR', [255, 255, 255])
        self.box_color = cfg.get('BOX_COLOR', [0, 0, 0])
        ram_tag_color_path = cfg.get('RAM_TAG_COLOR_PATH', None)
        self.color_dict = {'default': tuple(self.box_color)}
        if ram_tag_color_path is not None:
            lines = [id_name_color.strip().split('#;#') for id_name_color in open(ram_tag_color_path).readlines()]
            self.color_dict.update({id_name_color[1]: tuple(eval(id_name_color[2])) for id_name_color in lines})
        if self.use_aug:
            from .maskaug import MaskAugAnnotator
            self.maskaug_anno = MaskAugAnnotator(cfg={})
        from .inpainting import InpaintingVideoAnnotator
        self.inpainting_anno = InpaintingVideoAnnotator(cfg=cfg['INPAINTING'])

    def find_contours(self, mask):
        contours, hier = cv2.findContours(mask, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
        return contours

    def draw_contours(self, canvas, contour, color):
        canvas = np.ascontiguousarray(canvas, dtype=np.uint8)
        canvas = cv2.drawContours(canvas, contour, -1, color, thickness=3)
        return canvas

    def forward(self, color=None, mask_cfg=None, frames=None, video=None, mask=None, bbox=None, label=None, caption=None, mode=None):
        inp_data = self.inpainting_anno.forward(frames, video, mask, bbox, label, caption, mode)
        inp_masks = inp_data['masks']

        label = label[0] if label is not None and isinstance(label, list) else label
        if label is not None and label in self.color_dict:
            color = self.color_dict[label]
        elif color is not None:
            color = color
        else:
            color = self.color_dict['default']

        num_frames = len(inp_masks)
        ret_data = []
        for i in range(num_frames):
            sub_mask = inp_masks[i]
            if self.use_aug and mask_cfg is not None:
                sub_mask = self.maskaug_anno.forward(sub_mask, mask_cfg)
            canvas = np.ones((sub_mask.shape[0], sub_mask.shape[1], 3)) * 255
            contour = self.find_contours(sub_mask)
            frame = self.draw_contours(canvas, contour, color)
            ret_data.append(frame)

        return ret_data