File size: 6,943 Bytes
690f890 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 |
# -*- coding: utf-8 -*-
# Copyright (c) Alibaba, Inc. and its affiliates.
import cv2
import numpy as np
from .utils import convert_to_numpy
class LayoutBboxAnnotator:
def __init__(self, cfg, device=None):
self.bg_color = cfg.get('BG_COLOR', [255, 255, 255])
self.box_color = cfg.get('BOX_COLOR', [0, 0, 0])
self.frame_size = cfg.get('FRAME_SIZE', [720, 1280]) # [H, W]
self.num_frames = cfg.get('NUM_FRAMES', 81)
ram_tag_color_path = cfg.get('RAM_TAG_COLOR_PATH', None)
self.color_dict = {'default': tuple(self.box_color)}
if ram_tag_color_path is not None:
lines = [id_name_color.strip().split('#;#') for id_name_color in open(ram_tag_color_path).readlines()]
self.color_dict.update({id_name_color[1]: tuple(eval(id_name_color[2])) for id_name_color in lines})
def forward(self, bbox, frame_size=None, num_frames=None, label=None, color=None):
frame_size = frame_size if frame_size is not None else self.frame_size
num_frames = num_frames if num_frames is not None else self.num_frames
assert len(bbox) == 2, 'bbox should be a list of two elements (start_bbox & end_bbox)'
# frame_size = [H, W]
# bbox = [x1, y1, x2, y2]
label = label[0] if label is not None and isinstance(label, list) else label
if label is not None and label in self.color_dict:
box_color = self.color_dict[label]
elif color is not None:
box_color = color
else:
box_color = self.color_dict['default']
start_bbox, end_bbox = bbox
start_bbox = [start_bbox[0], start_bbox[1], start_bbox[2] - start_bbox[0], start_bbox[3] - start_bbox[1]]
start_bbox = np.array(start_bbox, dtype=np.float32)
end_bbox = [end_bbox[0], end_bbox[1], end_bbox[2] - end_bbox[0], end_bbox[3] - end_bbox[1]]
end_bbox = np.array(end_bbox, dtype=np.float32)
bbox_increment = (end_bbox - start_bbox) / num_frames
ret_frames = []
for frame_idx in range(num_frames):
frame = np.zeros((frame_size[0], frame_size[1], 3), dtype=np.uint8)
frame[:] = self.bg_color
current_bbox = start_bbox + bbox_increment * frame_idx
current_bbox = current_bbox.astype(int)
x, y, w, h = current_bbox
cv2.rectangle(frame, (x, y), (x + w, y + h), box_color, 2)
ret_frames.append(frame[..., ::-1])
return ret_frames
class LayoutMaskAnnotator:
def __init__(self, cfg, device=None):
self.use_aug = cfg.get('USE_AUG', False)
self.bg_color = cfg.get('BG_COLOR', [255, 255, 255])
self.box_color = cfg.get('BOX_COLOR', [0, 0, 0])
ram_tag_color_path = cfg.get('RAM_TAG_COLOR_PATH', None)
self.color_dict = {'default': tuple(self.box_color)}
if ram_tag_color_path is not None:
lines = [id_name_color.strip().split('#;#') for id_name_color in open(ram_tag_color_path).readlines()]
self.color_dict.update({id_name_color[1]: tuple(eval(id_name_color[2])) for id_name_color in lines})
if self.use_aug:
from .maskaug import MaskAugAnnotator
self.maskaug_anno = MaskAugAnnotator(cfg={})
def find_contours(self, mask):
contours, hier = cv2.findContours(mask, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
return contours
def draw_contours(self, canvas, contour, color):
canvas = np.ascontiguousarray(canvas, dtype=np.uint8)
canvas = cv2.drawContours(canvas, contour, -1, color, thickness=3)
return canvas
def forward(self, mask=None, color=None, label=None, mask_cfg=None):
if not isinstance(mask, list):
is_batch = False
mask = [mask]
else:
is_batch = True
if label is not None and label in self.color_dict:
color = self.color_dict[label]
elif color is not None:
color = color
else:
color = self.color_dict['default']
ret_data = []
for sub_mask in mask:
sub_mask = convert_to_numpy(sub_mask)
if self.use_aug:
sub_mask = self.maskaug_anno.forward(sub_mask, mask_cfg)
canvas = np.ones((sub_mask.shape[0], sub_mask.shape[1], 3)) * 255
contour = self.find_contours(sub_mask)
frame = self.draw_contours(canvas, contour, color)
ret_data.append(frame)
if is_batch:
return ret_data
else:
return ret_data[0]
class LayoutTrackAnnotator:
def __init__(self, cfg, device=None):
self.use_aug = cfg.get('USE_AUG', False)
self.bg_color = cfg.get('BG_COLOR', [255, 255, 255])
self.box_color = cfg.get('BOX_COLOR', [0, 0, 0])
ram_tag_color_path = cfg.get('RAM_TAG_COLOR_PATH', None)
self.color_dict = {'default': tuple(self.box_color)}
if ram_tag_color_path is not None:
lines = [id_name_color.strip().split('#;#') for id_name_color in open(ram_tag_color_path).readlines()]
self.color_dict.update({id_name_color[1]: tuple(eval(id_name_color[2])) for id_name_color in lines})
if self.use_aug:
from .maskaug import MaskAugAnnotator
self.maskaug_anno = MaskAugAnnotator(cfg={})
from .inpainting import InpaintingVideoAnnotator
self.inpainting_anno = InpaintingVideoAnnotator(cfg=cfg['INPAINTING'])
def find_contours(self, mask):
contours, hier = cv2.findContours(mask, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
return contours
def draw_contours(self, canvas, contour, color):
canvas = np.ascontiguousarray(canvas, dtype=np.uint8)
canvas = cv2.drawContours(canvas, contour, -1, color, thickness=3)
return canvas
def forward(self, color=None, mask_cfg=None, frames=None, video=None, mask=None, bbox=None, label=None, caption=None, mode=None):
inp_data = self.inpainting_anno.forward(frames, video, mask, bbox, label, caption, mode)
inp_masks = inp_data['masks']
label = label[0] if label is not None and isinstance(label, list) else label
if label is not None and label in self.color_dict:
color = self.color_dict[label]
elif color is not None:
color = color
else:
color = self.color_dict['default']
num_frames = len(inp_masks)
ret_data = []
for i in range(num_frames):
sub_mask = inp_masks[i]
if self.use_aug and mask_cfg is not None:
sub_mask = self.maskaug_anno.forward(sub_mask, mask_cfg)
canvas = np.ones((sub_mask.shape[0], sub_mask.shape[1], 3)) * 255
contour = self.find_contours(sub_mask)
frame = self.draw_contours(canvas, contour, color)
ret_data.append(frame)
return ret_data
|