File size: 16,957 Bytes
505e401 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 |
import numpy as np
import pandas as pd
import random
import torch
import time
import os
import copy
import json
import tifffile
import h3
import setup
from sklearn.linear_model import RidgeCV
from sklearn.preprocessing import MinMaxScaler
from sklearn.metrics import average_precision_score
import utils
import models
import datasets
class EvaluatorSNT:
def __init__(self, train_params, eval_params):
self.train_params = train_params
self.eval_params = eval_params
with open('paths.json', 'r') as f:
paths = json.load(f)
D = np.load(os.path.join(paths['snt'], 'snt_res_5.npy'), allow_pickle=True)
D = D.item()
self.loc_indices_per_species = D['loc_indices_per_species']
self.labels_per_species = D['labels_per_species']
self.taxa = D['taxa']
self.obs_locs = D['obs_locs']
self.obs_locs_idx = D['obs_locs_idx']
def get_labels(self, species):
species = str(species)
lat = []
lon = []
gt = []
for hx in self.data:
cur_lat, cur_lon = h3.h3_to_geo(hx)
if species in self.data[hx]:
cur_label = int(len(self.data[hx][species]) > 0)
gt.append(cur_label)
lat.append(cur_lat)
lon.append(cur_lon)
lat = np.array(lat).astype(np.float32)
lon = np.array(lon).astype(np.float32)
obs_locs = np.vstack((lon, lat)).T
gt = np.array(gt).astype(np.float32)
return obs_locs, gt
def run_evaluation(self, model, enc):
results = {}
# set seeds:
np.random.seed(self.eval_params['seed'])
random.seed(self.eval_params['seed'])
# evaluate the geo model for each taxon
results['mean_average_precision'] = np.zeros((len(self.taxa)), dtype=np.float32)
# get eval locations and apply input encoding
obs_locs = torch.from_numpy(self.obs_locs).to(self.eval_params['device'])
loc_feat = enc.encode(obs_locs)
# get classes to eval
classes_of_interest = np.array([np.where(np.array(self.train_params['class_to_taxa']) == tt)[0] for tt in self.taxa]).squeeze()
classes_of_interest = torch.from_numpy(classes_of_interest)
# generate model predictions for classes of interest at eval locations
with torch.no_grad():
loc_emb = model(loc_feat, return_feats=True)
wt = model.class_emb.weight[classes_of_interest, :]
pred_mtx = torch.matmul(loc_emb, wt.T).cpu().numpy()
split_rng = np.random.default_rng(self.eval_params['split_seed'])
for tt_id, tt in enumerate(self.taxa):
# generate ground truth labels for current taxa
cur_class_of_interest = np.where(self.taxa == tt)[0][0]
cur_loc_indices = np.array(self.loc_indices_per_species[cur_class_of_interest])
cur_labels = np.array(self.labels_per_species[cur_class_of_interest])
# apply per-species split:
assert self.eval_params['split'] in ['all', 'val', 'test']
if self.eval_params['split'] != 'all':
num_val = np.floor(len(cur_labels) * self.eval_params['val_frac']).astype(int)
idx_rand = split_rng.permutation(len(cur_labels))
if self.eval_params['split'] == 'val':
idx_sel = idx_rand[:num_val]
elif self.eval_params['split'] == 'test':
idx_sel = idx_rand[num_val:]
cur_loc_indices = cur_loc_indices[idx_sel]
cur_labels = cur_labels[idx_sel]
# extract model predictions for current taxa from prediction matrix:
pred = pred_mtx[cur_loc_indices, tt_id]
# compute the AP for each taxa
results['mean_average_precision'][tt_id] = average_precision_score((cur_labels > 0).astype(np.int32), pred)
valid_taxa = ~np.isnan(results['mean_average_precision'])
# store results
results['per_species_average_precision_all'] = copy.deepcopy(results['mean_average_precision'])
per_species_average_precision_valid = results['per_species_average_precision_all'][valid_taxa]
results['mean_average_precision'] = per_species_average_precision_valid.mean()
results['num_eval_species_w_valid_ap'] = valid_taxa.sum()
results['num_eval_species_total'] = len(self.taxa)
return results
def report(self, results):
for field in ['mean_average_precision', 'num_eval_species_w_valid_ap', 'num_eval_species_total']:
print(f'{field}: {results[field]}')
class EvaluatorIUCN:
def __init__(self, train_params, eval_params):
self.train_params = train_params
self.eval_params = eval_params
with open('paths.json', 'r') as f:
paths = json.load(f)
with open(os.path.join(paths['iucn'], 'iucn_res_5.json'), 'r') as f:
self.data = json.load(f)
self.obs_locs = np.array(self.data['locs'], dtype=np.float32)
self.taxa = [int(tt) for tt in self.data['taxa_presence'].keys()]
def run_evaluation(self, model, enc):
results = {}
results['per_species_average_precision_all'] = np.zeros(len(self.taxa), dtype=np.float32)
# get eval locations and apply input encoding
obs_locs = torch.from_numpy(self.obs_locs).to(self.eval_params['device'])
loc_feat = enc.encode(obs_locs)
# get classes to eval
classes_of_interest = torch.from_numpy(np.array([np.where(np.array(self.train_params['class_to_taxa']) == tt)[0] for tt in self.taxa]).squeeze())
with torch.no_grad():
# generate model predictions for classes of interest at eval locations
loc_emb = model(loc_feat, return_feats=True)
wt = model.class_emb.weight[classes_of_interest, :]
pred_mtx = torch.matmul(loc_emb, wt.T)
for tt_id, tt in enumerate(self.taxa):
class_of_interest = np.where(np.array(self.train_params['class_to_taxa']) == tt)[0]
if len(class_of_interest) == 0:
# taxa of interest is not in the model
pred = None
else:
# extract model predictions for current taxa from prediction matrix
pred = pred_mtx[:, tt_id]
# evaluate accuracy
if pred is None:
results['per_species_average_precision_all'][tt_id] = np.nan
else:
gt = np.zeros(obs_locs.shape[0], dtype=np.float32)
gt[self.data['taxa_presence'][str(tt)]] = 1.0
# average precision score:
results['per_species_average_precision_all'][tt_id] = average_precision_score(gt, pred)
valid_taxa = ~np.isnan(results['per_species_average_precision_all'])
# store results
per_species_average_precision_valid = results['per_species_average_precision_all'][valid_taxa]
results['mean_average_precision'] = per_species_average_precision_valid.mean()
results['num_eval_species_w_valid_ap'] = valid_taxa.sum()
results['num_eval_species_total'] = len(self.taxa)
return results
def report(self, results):
for field in ['mean_average_precision', 'num_eval_species_w_valid_ap', 'num_eval_species_total']:
print(f'{field}: {results[field]}')
class EvaluatorGeoPrior:
def __init__(self, train_params, eval_params):
# store parameters:
self.train_params = train_params
self.eval_params = eval_params
with open('paths.json', 'r') as f:
paths = json.load(f)
# load vision model predictions:
self.data = np.load(os.path.join(paths['geo_prior'], 'geo_prior_model_preds.npz'))
print('\n', self.data['probs'].shape[0], 'total test observations')
# load locations:
meta = pd.read_csv(os.path.join(paths['geo_prior'], 'geo_prior_model_meta.csv'))
self.obs_locs = np.vstack((meta['longitude'].values, meta['latitude'].values)).T.astype(np.float32)
# taxonomic mapping:
self.taxon_map = self.find_mapping_between_models(self.data['model_to_taxa'], self.train_params['class_to_taxa'])
print(self.taxon_map.shape[0], 'out of', len(self.data['model_to_taxa']), 'taxa in both vision and geo models')
def find_mapping_between_models(self, vision_taxa, geo_taxa):
# this will output an array of size N_overlap X 2
# the first column will be the indices of the vision model, and the second is their
# corresponding index in the geo model
taxon_map = np.ones((vision_taxa.shape[0], 2), dtype=np.int32)*-1
taxon_map[:, 0] = np.arange(vision_taxa.shape[0])
geo_taxa_arr = np.array(geo_taxa)
for tt_id, tt in enumerate(vision_taxa):
ind = np.where(geo_taxa_arr==tt)[0]
if len(ind) > 0:
taxon_map[tt_id, 1] = ind[0]
inds = np.where(taxon_map[:, 1]>-1)[0]
taxon_map = taxon_map[inds, :]
return taxon_map
def convert_to_inat_vision_order(self, geo_pred_ip, vision_top_k_prob, vision_top_k_inds, vision_taxa, taxon_map):
# this is slow as we turn the sparse input back into the same size as the dense one
vision_pred = np.zeros((geo_pred_ip.shape[0], len(vision_taxa)), dtype=np.float32)
geo_pred = np.ones((geo_pred_ip.shape[0], len(vision_taxa)), dtype=np.float32)
vision_pred[np.arange(vision_pred.shape[0])[..., np.newaxis], vision_top_k_inds] = vision_top_k_prob
geo_pred[:, taxon_map[:, 0]] = geo_pred_ip[:, taxon_map[:, 1]]
return geo_pred, vision_pred
def run_evaluation(self, model, enc):
results = {}
# loop over in batches
batch_start = np.hstack((np.arange(0, self.data['probs'].shape[0], self.eval_params['batch_size']), self.data['probs'].shape[0]))
correct_pred = np.zeros(self.data['probs'].shape[0])
print('\nbid\t w geo\t wo geo')
for bb_id, bb in enumerate(range(len(batch_start)-1)):
batch_inds = np.arange(batch_start[bb], batch_start[bb+1])
vision_probs = self.data['probs'][batch_inds, :]
vision_inds = self.data['inds'][batch_inds, :]
gt = self.data['labels'][batch_inds]
obs_locs_batch = torch.from_numpy(self.obs_locs[batch_inds, :]).to(self.eval_params['device'])
loc_feat = enc.encode(obs_locs_batch)
with torch.no_grad():
geo_pred = model(loc_feat).cpu().numpy()
geo_pred, vision_pred = self.convert_to_inat_vision_order(geo_pred, vision_probs, vision_inds,
self.data['model_to_taxa'], self.taxon_map)
comb_pred = np.argmax(vision_pred*geo_pred, 1)
comb_pred = (comb_pred==gt)
correct_pred[batch_inds] = comb_pred
results['vision_only_top_1'] = float((self.data['inds'][:, -1] == self.data['labels']).mean())
results['vision_geo_top_1'] = float(correct_pred.mean())
return results
def report(self, results):
print('\nOverall accuracy vision only model', round(results['vision_only_top_1'], 3))
print('Overall accuracy of geo model ', round(results['vision_geo_top_1'], 3))
print('Gain ', round(results['vision_geo_top_1'] - results['vision_only_top_1'], 3))
class EvaluatorGeoFeature:
def __init__(self, train_params, eval_params):
self.train_params = train_params
self.eval_params = eval_params
with open('paths.json', 'r') as f:
paths = json.load(f)
self.data_path = paths['geo_feature']
self.country_mask = tifffile.imread(os.path.join(paths['masks'], 'USA_MASK.tif')) == 1
self.raster_names = ['ABOVE_GROUND_CARBON', 'ELEVATION', 'LEAF_AREA_INDEX', 'NON_TREE_VEGITATED', 'NOT_VEGITATED', 'POPULATION_DENSITY', 'SNOW_COVER', 'SOIL_MOISTURE', 'TREE_COVER']
self.raster_names_log_transform = ['POPULATION_DENSITY']
def load_raster(self, raster_name, log_transform=False):
raster = tifffile.imread(os.path.join(self.data_path, raster_name + '.tif')).astype(np.float32)
valid_mask = ~np.isnan(raster).copy() & self.country_mask
# log scaling:
if log_transform:
raster[valid_mask] = np.log1p(raster[valid_mask] - raster[valid_mask].min())
# 0/1 scaling:
raster[valid_mask] -= raster[valid_mask].min()
raster[valid_mask] /= raster[valid_mask].max()
return raster, valid_mask
def get_split_labels(self, raster, split_ids, split_of_interest):
# get the GT labels for a subset
inds_y, inds_x = np.where(split_ids==split_of_interest)
return raster[inds_y, inds_x]
def get_split_feats(self, model, enc, split_ids, split_of_interest):
locs = utils.coord_grid(self.country_mask.shape, split_ids=split_ids, split_of_interest=split_of_interest)
locs = torch.from_numpy(locs).to(self.eval_params['device'])
locs_enc = enc.encode(locs)
with torch.no_grad():
feats = model(locs_enc, return_feats=True).cpu().numpy()
return feats
def run_evaluation(self, model, enc):
results = {}
for raster_name in self.raster_names:
do_log_transform = raster_name in self.raster_names_log_transform
raster, valid_mask = self.load_raster(raster_name, do_log_transform)
split_ids = utils.create_spatial_split(raster, valid_mask, cell_size=self.eval_params['cell_size'])
feats_train = self.get_split_feats(model, enc, split_ids=split_ids, split_of_interest=1)
feats_test = self.get_split_feats(model, enc, split_ids=split_ids, split_of_interest=2)
labels_train = self.get_split_labels(raster, split_ids, 1)
labels_test = self.get_split_labels(raster, split_ids, 2)
scaler = MinMaxScaler()
feats_train_scaled = scaler.fit_transform(feats_train)
feats_test_scaled = scaler.transform(feats_test)
clf = RidgeCV(alphas=(0.1, 1.0, 10.0), normalize=False, cv=10, fit_intercept=True, scoring='r2').fit(feats_train_scaled, labels_train)
train_score = clf.score(feats_train_scaled, labels_train)
test_score = clf.score(feats_test_scaled, labels_test)
results[f'train_r2_{raster_name}'] = float(train_score)
results[f'test_r2_{raster_name}'] = float(test_score)
results[f'alpha_{raster_name}'] = float(clf.alpha_)
return results
def report(self, results):
report_fields = [x for x in results if 'test_r2' in x]
for field in report_fields:
print(f'{field}: {results[field]}')
print(np.mean([results[field] for field in report_fields]))
def launch_eval_run(overrides):
eval_params = setup.get_default_params_eval(overrides)
# set up model:
eval_params['model_path'] = os.path.join(eval_params['exp_base'], eval_params['experiment_name'], eval_params['ckp_name'])
train_params = torch.load(eval_params['model_path'], map_location='cpu')
model = models.get_model(train_params['params'])
model.load_state_dict(train_params['state_dict'], strict=True)
model = model.to(eval_params['device'])
model.eval()
# create input encoder:
if train_params['params']['input_enc'] in ['env', 'sin_cos_env']:
raster = datasets.load_env().to(eval_params['device'])
else:
raster = None
enc = utils.CoordEncoder(train_params['params']['input_enc'], raster=raster)
t = time.time()
if eval_params['eval_type'] == 'snt':
eval_params['split'] = 'test' # val, test, all
eval_params['val_frac'] = 0.50
eval_params['split_seed'] = 7499
evaluator = EvaluatorSNT(train_params['params'], eval_params)
results = evaluator.run_evaluation(model, enc)
evaluator.report(results)
elif eval_params['eval_type'] == 'iucn':
evaluator = EvaluatorIUCN(train_params['params'], eval_params)
results = evaluator.run_evaluation(model, enc)
evaluator.report(results)
elif eval_params['eval_type'] == 'geo_prior':
evaluator = EvaluatorGeoPrior(train_params['params'], eval_params)
results = evaluator.run_evaluation(model, enc)
evaluator.report(results)
elif eval_params['eval_type'] == 'geo_feature':
evaluator = EvaluatorGeoFeature(train_params['params'], eval_params)
results = evaluator.run_evaluation(model, enc)
evaluator.report(results)
else:
raise NotImplementedError('Eval type not implemented.')
print(f'evaluation completed in {np.around((time.time()-t)/60, 1)} min')
return results
|