Update app.py
Browse files
app.py
CHANGED
@@ -5,53 +5,149 @@ from transformers import pipeline
|
|
5 |
from TTS.api import TTS
|
6 |
import tempfile
|
7 |
import os
|
|
|
8 |
|
9 |
app = Flask(__name__)
|
10 |
CORS(app)
|
11 |
|
12 |
-
# Load models
|
|
|
13 |
whisper_model = WhisperModel("small", device="cpu", compute_type="int8")
|
14 |
llm = pipeline("text-generation", model="tiiuae/falcon-rw-1b", max_new_tokens=100)
|
15 |
tts = TTS(model_name="tts_models/en/ljspeech/tacotron2-DDC", progress_bar=False, gpu=False)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
16 |
|
17 |
@app.route("/talk", methods=["POST"])
|
18 |
def talk():
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
19 |
if "audio" not in request.files:
|
20 |
return jsonify({"error": "No audio file"}), 400
|
21 |
-
|
22 |
-
#
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
40 |
|
41 |
@app.route("/chat", methods=["POST"])
|
42 |
def chat():
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
51 |
|
52 |
@app.route("/")
|
53 |
def index():
|
54 |
-
|
|
|
55 |
|
56 |
if __name__ == "__main__":
|
57 |
-
app.run(host="0.0.0.0", port=7860)
|
|
|
5 |
from TTS.api import TTS
|
6 |
import tempfile
|
7 |
import os
|
8 |
+
import re
|
9 |
|
10 |
app = Flask(__name__)
|
11 |
CORS(app)
|
12 |
|
13 |
+
# Load models once at startup for better performance
|
14 |
+
print("Loading AI models...")
|
15 |
whisper_model = WhisperModel("small", device="cpu", compute_type="int8")
|
16 |
llm = pipeline("text-generation", model="tiiuae/falcon-rw-1b", max_new_tokens=100)
|
17 |
tts = TTS(model_name="tts_models/en/ljspeech/tacotron2-DDC", progress_bar=False, gpu=False)
|
18 |
+
print("All models loaded successfully!")
|
19 |
+
|
20 |
+
def extract_ai_response(full_text, user_input):
|
21 |
+
"""
|
22 |
+
Extract only the AI's response from the generated text using multiple strategies.
|
23 |
+
This helps prevent the TTS engine from repeating the user's input.
|
24 |
+
"""
|
25 |
+
# Strategy 1: Try to find text after "AI:" marker
|
26 |
+
if "AI:" in full_text:
|
27 |
+
try:
|
28 |
+
return full_text.split("AI:")[1].strip()
|
29 |
+
except IndexError:
|
30 |
+
pass # Fall through to next strategy
|
31 |
+
|
32 |
+
# Strategy 2: Try to find text after the user input
|
33 |
+
if user_input in full_text:
|
34 |
+
try:
|
35 |
+
return full_text[full_text.find(user_input) + len(user_input):].strip()
|
36 |
+
except:
|
37 |
+
pass # Fall through to next strategy
|
38 |
+
|
39 |
+
# Strategy 3: Try to split by sentences and remove the first one (likely the input)
|
40 |
+
try:
|
41 |
+
sentences = re.split(r'[.!?]\s+', full_text)
|
42 |
+
if len(sentences) > 1:
|
43 |
+
return ' '.join(sentences[1:]).strip()
|
44 |
+
except:
|
45 |
+
pass # Fall through to fallback
|
46 |
+
|
47 |
+
# Fallback: Return the original text if all else fails
|
48 |
+
return full_text.strip()
|
49 |
|
50 |
@app.route("/talk", methods=["POST"])
|
51 |
def talk():
|
52 |
+
"""
|
53 |
+
Process audio from the user:
|
54 |
+
1. Transcribe the audio to text
|
55 |
+
2. Generate an AI response to the transcription
|
56 |
+
3. Convert the AI response to speech
|
57 |
+
4. Return the speech audio file
|
58 |
+
"""
|
59 |
if "audio" not in request.files:
|
60 |
return jsonify({"error": "No audio file"}), 400
|
61 |
+
|
62 |
+
# Create a temporary file for the input audio
|
63 |
+
input_audio_path = None
|
64 |
+
output_audio_path = None
|
65 |
+
|
66 |
+
try:
|
67 |
+
# Save the uploaded audio to a temporary file
|
68 |
+
audio_file = request.files["audio"]
|
69 |
+
with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as tmp:
|
70 |
+
input_audio_path = tmp.name
|
71 |
+
audio_file.save(input_audio_path)
|
72 |
+
|
73 |
+
# Transcribe the audio to text
|
74 |
+
segments, _ = whisper_model.transcribe(input_audio_path)
|
75 |
+
transcription = "".join([seg.text for seg in segments]).strip()
|
76 |
+
|
77 |
+
# Check if transcription was successful
|
78 |
+
if not transcription:
|
79 |
+
return jsonify({"error": "Could not transcribe audio"}), 400
|
80 |
+
|
81 |
+
print(f"Transcribed: '{transcription}'")
|
82 |
+
|
83 |
+
# Generate AI response
|
84 |
+
prompt = f"User: {transcription}\nAI:"
|
85 |
+
response_raw = llm(prompt)[0]["generated_text"]
|
86 |
+
|
87 |
+
# Extract only the AI's response
|
88 |
+
ai_response = extract_ai_response(response_raw, transcription)
|
89 |
+
print(f"AI Response: '{ai_response}'")
|
90 |
+
|
91 |
+
# Generate speech from the AI response
|
92 |
+
output_audio_path = tempfile.mktemp(suffix=".wav")
|
93 |
+
tts.tts_to_file(text=ai_response, file_path=output_audio_path)
|
94 |
+
|
95 |
+
# Return the audio file
|
96 |
+
return send_file(
|
97 |
+
output_audio_path,
|
98 |
+
mimetype="audio/wav",
|
99 |
+
as_attachment=True,
|
100 |
+
download_name="ai_response.wav"
|
101 |
+
)
|
102 |
+
|
103 |
+
except Exception as e:
|
104 |
+
print(f"Error in /talk: {str(e)}")
|
105 |
+
return jsonify({"error": str(e)}), 500
|
106 |
+
|
107 |
+
finally:
|
108 |
+
# Clean up the input audio file
|
109 |
+
if input_audio_path and os.path.exists(input_audio_path):
|
110 |
+
try:
|
111 |
+
os.unlink(input_audio_path)
|
112 |
+
except Exception as e:
|
113 |
+
print(f"Error deleting input file: {e}")
|
114 |
+
|
115 |
+
# Note: We don't delete the output file here as Flask will handle that
|
116 |
+
# after the client has downloaded it
|
117 |
|
118 |
@app.route("/chat", methods=["POST"])
|
119 |
def chat():
|
120 |
+
"""
|
121 |
+
Process text input from the user:
|
122 |
+
1. Generate an AI response to the input
|
123 |
+
2. Return the response as JSON
|
124 |
+
"""
|
125 |
+
try:
|
126 |
+
data = request.get_json()
|
127 |
+
if not data or "text" not in data:
|
128 |
+
return jsonify({"error": "Missing 'text' in request body"}), 400
|
129 |
+
|
130 |
+
user_input = data["text"].strip()
|
131 |
+
if not user_input:
|
132 |
+
return jsonify({"error": "Empty input"}), 400
|
133 |
+
|
134 |
+
# Generate AI response
|
135 |
+
prompt = f"User: {user_input}\nAI:"
|
136 |
+
response_raw = llm(prompt)[0]["generated_text"]
|
137 |
+
|
138 |
+
# Extract only the AI's response
|
139 |
+
ai_response = extract_ai_response(response_raw, user_input)
|
140 |
+
|
141 |
+
return jsonify({"response": ai_response})
|
142 |
+
|
143 |
+
except Exception as e:
|
144 |
+
print(f"Error in /chat: {str(e)}")
|
145 |
+
return jsonify({"error": str(e)}), 500
|
146 |
|
147 |
@app.route("/")
|
148 |
def index():
|
149 |
+
"""Simple route to check if the API is running"""
|
150 |
+
return "Metaverse AI Character API running. Models loaded and ready."
|
151 |
|
152 |
if __name__ == "__main__":
|
153 |
+
app.run(host="0.0.0.0", port=7860, debug=True)
|