File size: 1,410 Bytes
0b6f989 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 |
from flask import Flask, request, jsonify, send_file
from flask_cors import CORS
from faster_whisper import WhisperModel
from transformers import pipeline
from TTS.api import TTS
import tempfile
import os
app = Flask(__name__)
CORS(app)
# Load models
whisper_model = WhisperModel("small", device="cpu", compute_type="int8")
llm = pipeline("text-generation", model="tiiuae/falcon-rw-1b", max_new_tokens=100)
tts = TTS(model_name="tts_models/en/ljspeech/tacotron2-DDC", progress_bar=False, gpu=False)
@app.route("/talk", methods=["POST"])
def talk():
if "audio" not in request.files:
return jsonify({"error": "No audio file"}), 400
# Save audio
audio_file = request.files["audio"]
with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as tmp:
audio_path = tmp.name
audio_file.save(audio_path)
# Transcribe
segments, _ = whisper_model.transcribe(audio_path)
transcription = "".join([seg.text for seg in segments])
# Generate response
response = llm(transcription)[0]["generated_text"]
# Synthesize speech
tts_audio_path = audio_path.replace(".wav", "_reply.wav")
tts.tts_to_file(text=response, file_path=tts_audio_path)
return send_file(tts_audio_path, mimetype="audio/wav")
@app.route("/")
def index():
return "Metaverse AI Character API running."
if __name__ == "__main__":
app.run(host="0.0.0.0", port=7860)
|