from flask import Flask, request, jsonify, send_file from flask_cors import CORS import torch import numpy as np import trimesh import os from io import BytesIO import base64 from PIL import Image import uuid import time import sys import gc # For explicit garbage collection import threading import queue import psutil # Set environment variables before anything else os.environ['SHAPEE_NO_INTERACTIVE'] = '1' # Setup cache directory with appropriate permissions cache_dir = os.path.join(os.getcwd(), 'shap_e_model_cache') os.makedirs(cache_dir, exist_ok=True) os.environ['XDG_CACHE_HOME'] = os.getcwd() print(f"Using cache directory: {cache_dir}") # Import Shap-E print("Importing Shap-E modules...") try: # Try the direct import approach first from shap_e.diffusion.sample import sample_latents from shap_e.diffusion.gaussian_diffusion import diffusion_from_config from shap_e.models.download import load_model, load_config from shap_e.util.notebooks import create_pan_cameras, decode_latent_mesh print("Shap-E modules imported successfully!") except ImportError as e: print(f"Error importing Shap-E modules: {e}") # Alternative approach if direct import fails try: print("Attempting alternative import approach...") # Try monkey patching the ipywidgets module if that's the issue import sys import types if 'ipywidgets' not in sys.modules: sys.modules['ipywidgets'] = types.ModuleType('ipywidgets') print("Added mock ipywidgets module") # Try imports again from shap_e.diffusion.sample import sample_latents from shap_e.diffusion.gaussian_diffusion import diffusion_from_config from shap_e.models.download import load_model, load_config from shap_e.util.notebooks import create_pan_cameras, decode_latent_mesh print("Shap-E modules imported successfully with workaround!") except Exception as e2: print(f"Alternative import also failed: {e2}") sys.exit(1) except Exception as e: print(f"Unexpected error importing Shap-E modules: {e}") sys.exit(1) app = Flask(__name__) CORS(app) # Create output directory if it doesn't exist output_dir = os.path.join(os.getcwd(), "outputs") os.makedirs(output_dir, exist_ok=True) print(f"Output directory: {output_dir}") # Check permissions on directories try: test_file_path = os.path.join(cache_dir, "test_write_permissions.txt") with open(test_file_path, 'w') as f: f.write("Testing write permissions") os.remove(test_file_path) print("Cache directory is writable") except Exception as e: print(f"WARNING: Cache directory is not writable: {e}") try: test_file_path = os.path.join(output_dir, "test_write_permissions.txt") with open(test_file_path, 'w') as f: f.write("Testing write permissions") os.remove(test_file_path) print("Output directory is writable") except Exception as e: print(f"WARNING: Output directory is not writable: {e}") print("Setting up device...") device = torch.device('cpu') # Force CPU for Hugging Face Spaces print(f"Using device: {device}") # Global variables for models (will be loaded on first request) xm = None model = None diffusion = None # Job queue and results dictionary job_queue = queue.Queue() job_results = {} generation_thread = None is_thread_running = False # New global variables for optimizations last_usage_time = None active_jobs = 0 max_concurrent_jobs = 1 # Limit concurrent jobs for 2vCPU def get_adaptive_parameters(): """Adjust parameters based on current system resources""" mem = psutil.virtual_memory() # Base parameters - more conservative to prevent memory issues params = { 'karras_steps': 6, # Reduced from 8 to 6 as default 'batch_size': 1, 'guidance_scale': 15.0 } # If memory is tight, reduce steps further if mem.percent > 70: params['karras_steps'] = 4 # Even more conservative # If we have more memory to spare, can be slightly more generous if mem.percent < 50: params['karras_steps'] = 8 print(f"Adaptive parameters chosen: karras_steps={params['karras_steps']}, mem={mem.percent}%") return params def check_memory_pressure(): """Check if memory is getting too high and take action if needed""" mem = psutil.virtual_memory() if mem.percent > 80: # Reduced threshold from 85 to 80 print("WARNING: Memory pressure critical. Forcing garbage collection.") gc.collect() torch.cuda.empty_cache() if torch.cuda.is_available() else None # If still critical, try more aggressive measures if psutil.virtual_memory().percent > 75: print("EMERGENCY: Memory still critical. Clearing model cache.") # Reset global models to force reload when memory is better global xm, model, diffusion xm, model, diffusion = None, None, None gc.collect() return True return False def load_transmitter_model(): global xm, last_usage_time last_usage_time = time.time() if xm is None: print("Loading transmitter model...") xm = load_model('transmitter', device=device) print("Transmitter model loaded!") def load_primary_model(): global model, diffusion, last_usage_time last_usage_time = time.time() if model is None or diffusion is None: print("Loading primary models...") torch.set_default_dtype(torch.float32) # Use float32 instead of float64 model = load_model('text300M', device=device) diffusion = diffusion_from_config(load_config('diffusion')) print("Primary models loaded!") def load_models_if_needed(): """Legacy function for compatibility""" load_primary_model() load_transmitter_model() def model_unloader_thread(): """Thread that periodically unloads models if they haven't been used""" global xm, model, diffusion, last_usage_time while True: time.sleep(180) # Check more frequently: every 3 minutes instead of 5 if last_usage_time is not None: idle_time = time.time() - last_usage_time # If models have been idle for more than 5 minutes (reduced from 10) and no active jobs if idle_time > 300 and active_jobs == 0: # Check memory usage - more aggressive unloading mem = psutil.virtual_memory() if mem.percent > 40: # Lowered threshold from 50 to 40 print(f"Models idle for {idle_time:.1f} seconds and memory at {mem.percent}%. Unloading...") xm, model, diffusion = None, None, None gc.collect() torch.cuda.empty_cache() if torch.cuda.is_available() else None def save_trimesh(mesh, filename_base): """Save mesh in multiple formats using trimesh""" # Convert to trimesh format if needed if not isinstance(mesh, trimesh.Trimesh): try: # Try to convert to trimesh vertices = np.array(mesh.vertices) faces = np.array(mesh.faces) trimesh_obj = trimesh.Trimesh(vertices=vertices, faces=faces) except Exception as e: print(f"Error converting to trimesh: {e}") raise else: trimesh_obj = mesh # Save as GLB glb_path = f"{filename_base}.glb" try: trimesh_obj.export(glb_path, file_type='glb') print(f"Saved GLB file: {glb_path}") except Exception as e: print(f"Error saving GLB: {e}") # Try alternative approach try: scene = trimesh.Scene() scene.add_geometry(trimesh_obj) scene.export(glb_path) print(f"Saved GLB using scene approach: {glb_path}") except Exception as e2: print(f"Alternative GLB export also failed: {e2}") glb_path = None # Save as OBJ - always works more reliably obj_path = f"{filename_base}.obj" try: trimesh_obj.export(obj_path, file_type='obj') print(f"Saved OBJ file: {obj_path}") except Exception as e: print(f"Error saving OBJ: {e}") # Try to write directly try: with open(obj_path, 'w') as f: for v in trimesh_obj.vertices: f.write(f"v {v[0]} {v[1]} {v[2]}\n") for face in trimesh_obj.faces: f.write(f"f {face[0]+1} {face[1]+1} {face[2]+1}\n") print(f"Saved OBJ using direct write: {obj_path}") except Exception as e2: print(f"Alternative OBJ export also failed: {e2}") obj_path = None # Also save as PLY as a fallback ply_path = f"{filename_base}.ply" try: trimesh_obj.export(ply_path, file_type='ply') print(f"Saved PLY file: {ply_path}") except Exception as e: print(f"Error saving PLY: {e}") ply_path = None return { "glb": os.path.basename(glb_path) if glb_path else None, "obj": os.path.basename(obj_path) if obj_path else None, "ply": os.path.basename(ply_path) if ply_path else None } def process_job(job_id, prompt): try: # Get adaptive parameters adaptive_params = get_adaptive_parameters() karras_steps = adaptive_params['karras_steps'] batch_size = adaptive_params['batch_size'] guidance_scale = adaptive_params['guidance_scale'] # Load primary models for generation load_primary_model() # Optimization: Run garbage collection before starting intensive task gc.collect() torch.cuda.empty_cache() if torch.cuda.is_available() else None print(f"Starting latent generation for job {job_id} with {karras_steps} steps...") # Generate latents latents = None with torch.inference_mode(): latents = sample_latents( batch_size=batch_size, model=model, diffusion=diffusion, guidance_scale=guidance_scale, model_kwargs=dict(texts=[prompt] * batch_size), progress=True, clip_denoised=True, use_fp16=False, # CPU doesn't support fp16 use_karras=True, karras_steps=karras_steps, sigma_min=1e-3, sigma_max=160, s_churn=0, ) print(f"Latent generation complete for job {job_id}!") # Optimization: Clear unnecessary memory and check pressure check_memory_pressure() # Generate a unique filename unique_id = str(uuid.uuid4()) filename = f"{output_dir}/{unique_id}" # Load transmitter model for decoding load_transmitter_model() # Convert latent to mesh print(f"Decoding mesh for job {job_id}...") t0 = time.time() # Monitor memory mem_before = psutil.Process().memory_info().rss / (1024 * 1024) print(f"Memory before mesh decoding: {mem_before:.2f} MB") # Decode the mesh mesh = decode_latent_mesh(xm, latents[0]).tri_mesh() print(f"Mesh decoded in {time.time() - t0:.2f} seconds") mem_after = psutil.Process().memory_info().rss / (1024 * 1024) print(f"Memory after decoding: {mem_after:.2f} MB (delta: {mem_after - mem_before:.2f} MB)") # Report mesh complexity if possible try: vertices_count = len(mesh.vertices) faces_count = len(mesh.faces) print(f"Mesh complexity: {vertices_count} vertices, {faces_count} faces") except Exception as e: print(f"Could not determine mesh complexity: {e}") vertices_count = 0 faces_count = 0 # Clear latents from memory del latents gc.collect() # Convert to trimesh format and save files print(f"Converting and saving mesh for job {job_id}...") # Save mesh using the helper function saved_files = save_trimesh(mesh, filename) # Clear mesh from memory del mesh gc.collect() # Check which files were successfully saved result = { "success": True, "message": "3D model generated successfully", "timestamp": time.time(), "stats": { "vertices": vertices_count, "faces": faces_count } } # Add URLs for the files that were saved if saved_files["glb"]: result["glb_url"] = f"/download/{saved_files['glb']}" if saved_files["obj"]: result["obj_url"] = f"/download/{saved_files['obj']}" if saved_files["ply"]: result["ply_url"] = f"/download/{saved_files['ply']}" # If no files were saved, mark as failure if not (saved_files["glb"] or saved_files["obj"] or saved_files["ply"]): result["success"] = False result["message"] = "Failed to save mesh in any format" print(f"Files saved successfully for job {job_id}!") # Force garbage collection again gc.collect() return result except Exception as e: print(f"Error during generation for job {job_id}: {str(e)}") import traceback traceback.print_exc() return { "success": False, "error": str(e), "timestamp": time.time() } def worker_thread(): global is_thread_running, active_jobs is_thread_running = True try: while True: try: # Get job from queue with a timeout job_id, prompt = job_queue.get(timeout=1) print(f"Processing job {job_id} with prompt: {prompt}") # Process the job result = process_job(job_id, prompt) # Store the result and update counter job_results[job_id] = result active_jobs -= 1 # Explicit cleanup after job gc.collect() except queue.Empty: # No jobs in queue, continue waiting pass except Exception as e: print(f"Error in worker thread: {e}") import traceback traceback.print_exc() # If there was a job being processed, mark it as failed if 'job_id' in locals(): job_results[job_id] = { "success": False, "error": str(e), "timestamp": time.time() } active_jobs -= 1 # Force garbage collection to clean up gc.collect() finally: is_thread_running = False def purge_old_results_thread(): """Thread that periodically cleans up old job results to manage memory""" while True: try: time.sleep(1800) # Run every 30 minutes # Default threshold: 2 hours threshold_time = time.time() - (2 * 3600) # Track jobs to be removed jobs_to_remove = [] for job_id, result in job_results.items(): # If the job has a timestamp and it's older than threshold if result.get('timestamp', time.time()) < threshold_time: jobs_to_remove.append(job_id) # Remove the old jobs for job_id in jobs_to_remove: job_results.pop(job_id, None) if jobs_to_remove: print(f"Auto-purged {len(jobs_to_remove)} old job results") # Force garbage collection gc.collect() except Exception as e: print(f"Error in purge thread: {e}") def ensure_worker_thread_running(): global generation_thread, is_thread_running if generation_thread is None or not generation_thread.is_alive(): print("Starting worker thread...") generation_thread = threading.Thread(target=worker_thread, daemon=True) generation_thread.start() def start_monitoring_threads(): """Start all monitoring and maintenance threads""" # Start model unloader thread threading.Thread(target=model_unloader_thread, daemon=True).start() # Start results purge thread threading.Thread(target=purge_old_results_thread, daemon=True).start() @app.route('/generate', methods=['POST']) def generate_3d(): global active_jobs # Check if we're already at max capacity if active_jobs >= max_concurrent_jobs: return jsonify({ "success": False, "error": "Server is at maximum capacity. Please try again later.", "retry_after": 300 }), 503 # Get the prompt from the request data = request.json if not data or 'prompt' not in data: return jsonify({"error": "No prompt provided"}), 400 prompt = data['prompt'] print(f"Received prompt: {prompt}") # Generate a job ID job_id = str(uuid.uuid4()) # Add job to queue ensure_worker_thread_running() job_queue.put((job_id, prompt)) active_jobs += 1 # Return job ID immediately return jsonify({ "success": True, "message": "Job submitted successfully", "job_id": job_id, "status_url": f"/status/{job_id}" }) @app.route('/status/', methods=['GET']) def job_status(job_id): if job_id in job_results: result = job_results[job_id] # Return the result return jsonify(result) else: # Job is still in progress return jsonify({ "success": None, "message": "Job is still processing", "job_id": job_id }) @app.route('/download/', methods=['GET']) def download_file(filename): try: file_path = os.path.join(output_dir, filename) if not os.path.exists(file_path): return jsonify({"error": "File not found"}), 404 return send_file(file_path, as_attachment=True) except Exception as e: return jsonify({"error": str(e)}), 500 @app.route('/health', methods=['GET']) def health_check(): """Enhanced health check endpoint to monitor resource usage""" try: # Memory info memory_info = psutil.virtual_memory() memory_usage = f"{memory_info.percent}% (Available: {memory_info.available / (1024**3):.2f} GB)" # CPU info cpu_usage = f"{psutil.cpu_percent(interval=0.1)}%" # Process specific info process = psutil.Process() process_memory = f"{process.memory_info().rss / (1024**3):.2f} GB" # Models status models_loaded = [] if model is not None: models_loaded.append("text300M") if diffusion is not None: models_loaded.append("diffusion") if xm is not None: models_loaded.append("transmitter") # Queue status queue_size = job_queue.qsize() # Check for model inactivity model_inactive = "N/A" if last_usage_time is not None: model_inactive = f"{(time.time() - last_usage_time) / 60:.1f} minutes" # Number of saved jobs saved_jobs = len(job_results) return jsonify({ "status": "ok", "message": "Service is running", "memory_usage": memory_usage, "process_memory": process_memory, "cpu_usage": cpu_usage, "queue_size": queue_size, "active_jobs": active_jobs, "saved_jobs": saved_jobs, "worker_running": is_thread_running, "models_loaded": models_loaded, "model_inactive_time": model_inactive }) except Exception as e: return jsonify({ "status": "warning", "error": str(e) }) @app.route('/', methods=['GET']) def home(): """Landing page with usage instructions""" return """ Text to 3D API

Text to 3D API

This is an optimized API that converts text prompts to 3D models.

How to use:

Step 1: Submit a generation job

POST /generate
Content-Type: application/json
{
    "prompt": "A futuristic building"
}
            

Response:

{
    "success": true,
    "message": "Job submitted successfully",
    "job_id": "123e4567-e89b-12d3-a456-426614174000",
    "status_url": "/status/123e4567-e89b-12d3-a456-426614174000"
}
            

Step 2: Check job status

GET /status/123e4567-e89b-12d3-a456-426614174000
            

Response (while processing):

{
    "success": null,
    "message": "Job is still processing",
    "job_id": "123e4567-e89b-12d3-a456-426614174000"
}
            

Response (when complete):

{
    "success": true,
    "message": "3D model generated successfully",
    "glb_url": "/download/abc123.glb",
    "obj_url": "/download/abc123.obj",
    "ply_url": "/download/abc123.ply"
}
            

Step 3: Download the files

Use the provided URLs to download the GLB, OBJ, and PLY files.

Health Check:

GET /health

Provides information about the service status and resource usage.

""" @app.route('/purge-results', methods=['POST']) def purge_old_results(): """Endpoint to manually purge old job results to free memory""" try: # Get the time threshold from request (default to 1 hour) threshold_hours = request.json.get('threshold_hours', 1) if request.json else 1 threshold_time = time.time() - (threshold_hours * 3600) # Track jobs to be removed jobs_to_remove = [] for job_id, result in job_results.items(): # If the job has a timestamp and it's older than threshold if result.get('timestamp', time.time()) < threshold_time: jobs_to_remove.append(job_id) # Remove the old jobs for job_id in jobs_to_remove: job_results.pop(job_id, None) # Force garbage collection gc.collect() return jsonify({ "success": True, "message": f"Purged {len(jobs_to_remove)} old job results", "remaining_jobs": len(job_results) }) except Exception as e: return jsonify({ "success": False, "error": str(e) }), 500 @app.route('/force-gc', methods=['POST']) def force_garbage_collection(): """Endpoint to manually trigger garbage collection""" try: # Get current memory usage before_mem = psutil.Process().memory_info().rss / (1024**3) # Force garbage collection gc.collect() torch.cuda.empty_cache() if torch.cuda.is_available() else None # Get memory usage after GC after_mem = psutil.Process().memory_info().rss / (1024**3) freed = before_mem - after_mem return jsonify({ "success": True, "message": f"Garbage collection completed", "before_memory_gb": round(before_mem, 2), "after_memory_gb": round(after_mem, 2), "freed_memory_gb": round(freed, 2) if freed > 0 else 0 }) except Exception as e: return jsonify({ "success": False, "error": str(e) }), 500 if __name__ == '__main__': # Start all monitoring threads start_monitoring_threads() # Start the worker thread ensure_worker_thread_running() # Recommended to run with gunicorn for production with increased timeout: # $ gunicorn app:app --bind 0.0.0.0:7860 --timeout 300 --workers 1 app.run(host='0.0.0.0', port=7860, debug=False) # Set debug=False in production