Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -110,20 +110,20 @@ def get_adaptive_parameters():
|
|
110 |
"""Adjust parameters based on current system resources"""
|
111 |
mem = psutil.virtual_memory()
|
112 |
|
113 |
-
# Base parameters
|
114 |
params = {
|
115 |
-
'karras_steps': 8
|
116 |
'batch_size': 1,
|
117 |
'guidance_scale': 15.0
|
118 |
}
|
119 |
|
120 |
# If memory is tight, reduce steps further
|
121 |
if mem.percent > 70:
|
122 |
-
params['karras_steps'] =
|
123 |
|
124 |
# If we have more memory to spare, can be slightly more generous
|
125 |
if mem.percent < 50:
|
126 |
-
params['karras_steps'] =
|
127 |
|
128 |
print(f"Adaptive parameters chosen: karras_steps={params['karras_steps']}, mem={mem.percent}%")
|
129 |
return params
|
@@ -131,13 +131,13 @@ def get_adaptive_parameters():
|
|
131 |
def check_memory_pressure():
|
132 |
"""Check if memory is getting too high and take action if needed"""
|
133 |
mem = psutil.virtual_memory()
|
134 |
-
if mem.percent >
|
135 |
print("WARNING: Memory pressure critical. Forcing garbage collection.")
|
136 |
gc.collect()
|
137 |
torch.cuda.empty_cache() if torch.cuda.is_available() else None
|
138 |
|
139 |
# If still critical, try more aggressive measures
|
140 |
-
if psutil.virtual_memory().percent >
|
141 |
print("EMERGENCY: Memory still critical. Clearing model cache.")
|
142 |
# Reset global models to force reload when memory is better
|
143 |
global xm, model, diffusion
|
@@ -176,21 +176,87 @@ def model_unloader_thread():
|
|
176 |
global xm, model, diffusion, last_usage_time
|
177 |
|
178 |
while True:
|
179 |
-
time.sleep(
|
180 |
|
181 |
if last_usage_time is not None:
|
182 |
idle_time = time.time() - last_usage_time
|
183 |
|
184 |
-
# If models have been idle for more than
|
185 |
-
if idle_time >
|
186 |
-
# Check memory usage
|
187 |
mem = psutil.virtual_memory()
|
188 |
-
if mem.percent >
|
189 |
print(f"Models idle for {idle_time:.1f} seconds and memory at {mem.percent}%. Unloading...")
|
190 |
xm, model, diffusion = None, None, None
|
191 |
gc.collect()
|
192 |
torch.cuda.empty_cache() if torch.cuda.is_available() else None
|
193 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
194 |
def process_job(job_id, prompt):
|
195 |
try:
|
196 |
# Get adaptive parameters
|
@@ -209,6 +275,7 @@ def process_job(job_id, prompt):
|
|
209 |
print(f"Starting latent generation for job {job_id} with {karras_steps} steps...")
|
210 |
|
211 |
# Generate latents
|
|
|
212 |
with torch.inference_mode():
|
213 |
latents = sample_latents(
|
214 |
batch_size=batch_size,
|
@@ -227,7 +294,7 @@ def process_job(job_id, prompt):
|
|
227 |
)
|
228 |
print(f"Latent generation complete for job {job_id}!")
|
229 |
|
230 |
-
# Optimization: Clear unnecessary memory and
|
231 |
check_memory_pressure()
|
232 |
|
233 |
# Generate a unique filename
|
@@ -245,7 +312,7 @@ def process_job(job_id, prompt):
|
|
245 |
mem_before = psutil.Process().memory_info().rss / (1024 * 1024)
|
246 |
print(f"Memory before mesh decoding: {mem_before:.2f} MB")
|
247 |
|
248 |
-
# Decode the mesh
|
249 |
mesh = decode_latent_mesh(xm, latents[0]).tri_mesh()
|
250 |
|
251 |
print(f"Mesh decoded in {time.time() - t0:.2f} seconds")
|
@@ -254,50 +321,58 @@ def process_job(job_id, prompt):
|
|
254 |
|
255 |
# Report mesh complexity if possible
|
256 |
try:
|
257 |
-
|
258 |
-
|
259 |
-
print("
|
260 |
-
|
261 |
-
# Simplify mesh if it's too complex (if supported)
|
262 |
-
try:
|
263 |
-
if hasattr(mesh, 'simplify') and hasattr(mesh, 'faces') and len(mesh.faces) > 5000:
|
264 |
-
target_faces = min(5000, int(len(mesh.faces) * 0.6))
|
265 |
-
print(f"Simplifying mesh to target {target_faces} faces...")
|
266 |
-
t0 = time.time()
|
267 |
-
simplified = mesh.simplify_quadratic_decimation(target_faces)
|
268 |
-
mesh = simplified
|
269 |
-
print(f"Mesh simplified in {time.time() - t0:.2f} seconds")
|
270 |
-
print(f"New complexity: {len(mesh.vertices)} vertices, {len(mesh.faces)} faces")
|
271 |
except Exception as e:
|
272 |
-
print(f"
|
|
|
|
|
273 |
|
274 |
# Clear latents from memory
|
275 |
del latents
|
276 |
gc.collect()
|
277 |
|
278 |
-
#
|
279 |
-
print(f"
|
280 |
-
glb_path = f"{filename}.glb"
|
281 |
-
mesh.write_glb(glb_path)
|
282 |
|
283 |
-
# Save
|
284 |
-
|
285 |
-
obj_path = f"{filename}.obj"
|
286 |
-
with open(obj_path, 'w') as f:
|
287 |
-
mesh.write_obj(f)
|
288 |
|
289 |
# Clear mesh from memory
|
290 |
del mesh
|
291 |
gc.collect()
|
292 |
|
293 |
-
|
294 |
-
|
295 |
-
return {
|
296 |
"success": True,
|
297 |
"message": "3D model generated successfully",
|
298 |
-
"
|
299 |
-
"
|
|
|
|
|
|
|
300 |
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
301 |
|
302 |
except Exception as e:
|
303 |
print(f"Error during generation for job {job_id}: {str(e)}")
|
@@ -305,7 +380,8 @@ def process_job(job_id, prompt):
|
|
305 |
traceback.print_exc()
|
306 |
return {
|
307 |
"success": False,
|
308 |
-
"error": str(e)
|
|
|
309 |
}
|
310 |
|
311 |
def worker_thread():
|
@@ -326,6 +402,9 @@ def worker_thread():
|
|
326 |
job_results[job_id] = result
|
327 |
active_jobs -= 1
|
328 |
|
|
|
|
|
|
|
329 |
except queue.Empty:
|
330 |
# No jobs in queue, continue waiting
|
331 |
pass
|
@@ -337,12 +416,43 @@ def worker_thread():
|
|
337 |
if 'job_id' in locals():
|
338 |
job_results[job_id] = {
|
339 |
"success": False,
|
340 |
-
"error": str(e)
|
|
|
341 |
}
|
342 |
active_jobs -= 1
|
|
|
|
|
|
|
343 |
finally:
|
344 |
is_thread_running = False
|
345 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
346 |
def ensure_worker_thread_running():
|
347 |
global generation_thread, is_thread_running
|
348 |
|
@@ -351,8 +461,13 @@ def ensure_worker_thread_running():
|
|
351 |
generation_thread = threading.Thread(target=worker_thread, daemon=True)
|
352 |
generation_thread.start()
|
353 |
|
354 |
-
def
|
|
|
|
|
355 |
threading.Thread(target=model_unloader_thread, daemon=True).start()
|
|
|
|
|
|
|
356 |
|
357 |
@app.route('/generate', methods=['POST'])
|
358 |
def generate_3d():
|
@@ -394,7 +509,7 @@ def generate_3d():
|
|
394 |
def job_status(job_id):
|
395 |
if job_id in job_results:
|
396 |
result = job_results[job_id]
|
397 |
-
#
|
398 |
return jsonify(result)
|
399 |
else:
|
400 |
# Job is still in progress
|
@@ -407,9 +522,13 @@ def job_status(job_id):
|
|
407 |
@app.route('/download/<filename>', methods=['GET'])
|
408 |
def download_file(filename):
|
409 |
try:
|
410 |
-
|
|
|
|
|
|
|
|
|
411 |
except Exception as e:
|
412 |
-
return jsonify({"error": str(e)}),
|
413 |
|
414 |
@app.route('/health', methods=['GET'])
|
415 |
def health_check():
|
@@ -443,6 +562,9 @@ def health_check():
|
|
443 |
if last_usage_time is not None:
|
444 |
model_inactive = f"{(time.time() - last_usage_time) / 60:.1f} minutes"
|
445 |
|
|
|
|
|
|
|
446 |
return jsonify({
|
447 |
"status": "ok",
|
448 |
"message": "Service is running",
|
@@ -451,6 +573,7 @@ def health_check():
|
|
451 |
"cpu_usage": cpu_usage,
|
452 |
"queue_size": queue_size,
|
453 |
"active_jobs": active_jobs,
|
|
|
454 |
"worker_running": is_thread_running,
|
455 |
"models_loaded": models_loaded,
|
456 |
"model_inactive_time": model_inactive
|
@@ -516,12 +639,13 @@ GET /status/123e4567-e89b-12d3-a456-426614174000
|
|
516 |
"success": true,
|
517 |
"message": "3D model generated successfully",
|
518 |
"glb_url": "/download/abc123.glb",
|
519 |
-
"obj_url": "/download/abc123.obj"
|
|
|
520 |
}
|
521 |
</pre>
|
522 |
|
523 |
<h3>Step 3: Download the files</h3>
|
524 |
-
<p>Use the provided URLs to download the GLB and
|
525 |
|
526 |
<h2>Health Check:</h2>
|
527 |
<pre>GET /health</pre>
|
@@ -563,10 +687,40 @@ def purge_old_results():
|
|
563 |
"error": str(e)
|
564 |
}), 500
|
565 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
566 |
if __name__ == '__main__':
|
567 |
-
# Start
|
|
|
|
|
|
|
568 |
ensure_worker_thread_running()
|
569 |
-
start_model_unloader()
|
570 |
|
571 |
# Recommended to run with gunicorn for production with increased timeout:
|
572 |
# $ gunicorn app:app --bind 0.0.0.0:7860 --timeout 300 --workers 1
|
|
|
110 |
"""Adjust parameters based on current system resources"""
|
111 |
mem = psutil.virtual_memory()
|
112 |
|
113 |
+
# Base parameters - more conservative to prevent memory issues
|
114 |
params = {
|
115 |
+
'karras_steps': 6, # Reduced from 8 to 6 as default
|
116 |
'batch_size': 1,
|
117 |
'guidance_scale': 15.0
|
118 |
}
|
119 |
|
120 |
# If memory is tight, reduce steps further
|
121 |
if mem.percent > 70:
|
122 |
+
params['karras_steps'] = 4 # Even more conservative
|
123 |
|
124 |
# If we have more memory to spare, can be slightly more generous
|
125 |
if mem.percent < 50:
|
126 |
+
params['karras_steps'] = 8
|
127 |
|
128 |
print(f"Adaptive parameters chosen: karras_steps={params['karras_steps']}, mem={mem.percent}%")
|
129 |
return params
|
|
|
131 |
def check_memory_pressure():
|
132 |
"""Check if memory is getting too high and take action if needed"""
|
133 |
mem = psutil.virtual_memory()
|
134 |
+
if mem.percent > 80: # Reduced threshold from 85 to 80
|
135 |
print("WARNING: Memory pressure critical. Forcing garbage collection.")
|
136 |
gc.collect()
|
137 |
torch.cuda.empty_cache() if torch.cuda.is_available() else None
|
138 |
|
139 |
# If still critical, try more aggressive measures
|
140 |
+
if psutil.virtual_memory().percent > 75:
|
141 |
print("EMERGENCY: Memory still critical. Clearing model cache.")
|
142 |
# Reset global models to force reload when memory is better
|
143 |
global xm, model, diffusion
|
|
|
176 |
global xm, model, diffusion, last_usage_time
|
177 |
|
178 |
while True:
|
179 |
+
time.sleep(180) # Check more frequently: every 3 minutes instead of 5
|
180 |
|
181 |
if last_usage_time is not None:
|
182 |
idle_time = time.time() - last_usage_time
|
183 |
|
184 |
+
# If models have been idle for more than 5 minutes (reduced from 10) and no active jobs
|
185 |
+
if idle_time > 300 and active_jobs == 0:
|
186 |
+
# Check memory usage - more aggressive unloading
|
187 |
mem = psutil.virtual_memory()
|
188 |
+
if mem.percent > 40: # Lowered threshold from 50 to 40
|
189 |
print(f"Models idle for {idle_time:.1f} seconds and memory at {mem.percent}%. Unloading...")
|
190 |
xm, model, diffusion = None, None, None
|
191 |
gc.collect()
|
192 |
torch.cuda.empty_cache() if torch.cuda.is_available() else None
|
193 |
|
194 |
+
def save_trimesh(mesh, filename_base):
|
195 |
+
"""Save mesh in multiple formats using trimesh"""
|
196 |
+
# Convert to trimesh format if needed
|
197 |
+
if not isinstance(mesh, trimesh.Trimesh):
|
198 |
+
try:
|
199 |
+
# Try to convert to trimesh
|
200 |
+
vertices = np.array(mesh.vertices)
|
201 |
+
faces = np.array(mesh.faces)
|
202 |
+
trimesh_obj = trimesh.Trimesh(vertices=vertices, faces=faces)
|
203 |
+
except Exception as e:
|
204 |
+
print(f"Error converting to trimesh: {e}")
|
205 |
+
raise
|
206 |
+
else:
|
207 |
+
trimesh_obj = mesh
|
208 |
+
|
209 |
+
# Save as GLB
|
210 |
+
glb_path = f"{filename_base}.glb"
|
211 |
+
try:
|
212 |
+
trimesh_obj.export(glb_path, file_type='glb')
|
213 |
+
print(f"Saved GLB file: {glb_path}")
|
214 |
+
except Exception as e:
|
215 |
+
print(f"Error saving GLB: {e}")
|
216 |
+
# Try alternative approach
|
217 |
+
try:
|
218 |
+
scene = trimesh.Scene()
|
219 |
+
scene.add_geometry(trimesh_obj)
|
220 |
+
scene.export(glb_path)
|
221 |
+
print(f"Saved GLB using scene approach: {glb_path}")
|
222 |
+
except Exception as e2:
|
223 |
+
print(f"Alternative GLB export also failed: {e2}")
|
224 |
+
glb_path = None
|
225 |
+
|
226 |
+
# Save as OBJ - always works more reliably
|
227 |
+
obj_path = f"{filename_base}.obj"
|
228 |
+
try:
|
229 |
+
trimesh_obj.export(obj_path, file_type='obj')
|
230 |
+
print(f"Saved OBJ file: {obj_path}")
|
231 |
+
except Exception as e:
|
232 |
+
print(f"Error saving OBJ: {e}")
|
233 |
+
# Try to write directly
|
234 |
+
try:
|
235 |
+
with open(obj_path, 'w') as f:
|
236 |
+
for v in trimesh_obj.vertices:
|
237 |
+
f.write(f"v {v[0]} {v[1]} {v[2]}\n")
|
238 |
+
for face in trimesh_obj.faces:
|
239 |
+
f.write(f"f {face[0]+1} {face[1]+1} {face[2]+1}\n")
|
240 |
+
print(f"Saved OBJ using direct write: {obj_path}")
|
241 |
+
except Exception as e2:
|
242 |
+
print(f"Alternative OBJ export also failed: {e2}")
|
243 |
+
obj_path = None
|
244 |
+
|
245 |
+
# Also save as PLY as a fallback
|
246 |
+
ply_path = f"{filename_base}.ply"
|
247 |
+
try:
|
248 |
+
trimesh_obj.export(ply_path, file_type='ply')
|
249 |
+
print(f"Saved PLY file: {ply_path}")
|
250 |
+
except Exception as e:
|
251 |
+
print(f"Error saving PLY: {e}")
|
252 |
+
ply_path = None
|
253 |
+
|
254 |
+
return {
|
255 |
+
"glb": os.path.basename(glb_path) if glb_path else None,
|
256 |
+
"obj": os.path.basename(obj_path) if obj_path else None,
|
257 |
+
"ply": os.path.basename(ply_path) if ply_path else None
|
258 |
+
}
|
259 |
+
|
260 |
def process_job(job_id, prompt):
|
261 |
try:
|
262 |
# Get adaptive parameters
|
|
|
275 |
print(f"Starting latent generation for job {job_id} with {karras_steps} steps...")
|
276 |
|
277 |
# Generate latents
|
278 |
+
latents = None
|
279 |
with torch.inference_mode():
|
280 |
latents = sample_latents(
|
281 |
batch_size=batch_size,
|
|
|
294 |
)
|
295 |
print(f"Latent generation complete for job {job_id}!")
|
296 |
|
297 |
+
# Optimization: Clear unnecessary memory and check pressure
|
298 |
check_memory_pressure()
|
299 |
|
300 |
# Generate a unique filename
|
|
|
312 |
mem_before = psutil.Process().memory_info().rss / (1024 * 1024)
|
313 |
print(f"Memory before mesh decoding: {mem_before:.2f} MB")
|
314 |
|
315 |
+
# Decode the mesh
|
316 |
mesh = decode_latent_mesh(xm, latents[0]).tri_mesh()
|
317 |
|
318 |
print(f"Mesh decoded in {time.time() - t0:.2f} seconds")
|
|
|
321 |
|
322 |
# Report mesh complexity if possible
|
323 |
try:
|
324 |
+
vertices_count = len(mesh.vertices)
|
325 |
+
faces_count = len(mesh.faces)
|
326 |
+
print(f"Mesh complexity: {vertices_count} vertices, {faces_count} faces")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
327 |
except Exception as e:
|
328 |
+
print(f"Could not determine mesh complexity: {e}")
|
329 |
+
vertices_count = 0
|
330 |
+
faces_count = 0
|
331 |
|
332 |
# Clear latents from memory
|
333 |
del latents
|
334 |
gc.collect()
|
335 |
|
336 |
+
# Convert to trimesh format and save files
|
337 |
+
print(f"Converting and saving mesh for job {job_id}...")
|
|
|
|
|
338 |
|
339 |
+
# Save mesh using the helper function
|
340 |
+
saved_files = save_trimesh(mesh, filename)
|
|
|
|
|
|
|
341 |
|
342 |
# Clear mesh from memory
|
343 |
del mesh
|
344 |
gc.collect()
|
345 |
|
346 |
+
# Check which files were successfully saved
|
347 |
+
result = {
|
|
|
348 |
"success": True,
|
349 |
"message": "3D model generated successfully",
|
350 |
+
"timestamp": time.time(),
|
351 |
+
"stats": {
|
352 |
+
"vertices": vertices_count,
|
353 |
+
"faces": faces_count
|
354 |
+
}
|
355 |
}
|
356 |
+
|
357 |
+
# Add URLs for the files that were saved
|
358 |
+
if saved_files["glb"]:
|
359 |
+
result["glb_url"] = f"/download/{saved_files['glb']}"
|
360 |
+
if saved_files["obj"]:
|
361 |
+
result["obj_url"] = f"/download/{saved_files['obj']}"
|
362 |
+
if saved_files["ply"]:
|
363 |
+
result["ply_url"] = f"/download/{saved_files['ply']}"
|
364 |
+
|
365 |
+
# If no files were saved, mark as failure
|
366 |
+
if not (saved_files["glb"] or saved_files["obj"] or saved_files["ply"]):
|
367 |
+
result["success"] = False
|
368 |
+
result["message"] = "Failed to save mesh in any format"
|
369 |
+
|
370 |
+
print(f"Files saved successfully for job {job_id}!")
|
371 |
+
|
372 |
+
# Force garbage collection again
|
373 |
+
gc.collect()
|
374 |
+
|
375 |
+
return result
|
376 |
|
377 |
except Exception as e:
|
378 |
print(f"Error during generation for job {job_id}: {str(e)}")
|
|
|
380 |
traceback.print_exc()
|
381 |
return {
|
382 |
"success": False,
|
383 |
+
"error": str(e),
|
384 |
+
"timestamp": time.time()
|
385 |
}
|
386 |
|
387 |
def worker_thread():
|
|
|
402 |
job_results[job_id] = result
|
403 |
active_jobs -= 1
|
404 |
|
405 |
+
# Explicit cleanup after job
|
406 |
+
gc.collect()
|
407 |
+
|
408 |
except queue.Empty:
|
409 |
# No jobs in queue, continue waiting
|
410 |
pass
|
|
|
416 |
if 'job_id' in locals():
|
417 |
job_results[job_id] = {
|
418 |
"success": False,
|
419 |
+
"error": str(e),
|
420 |
+
"timestamp": time.time()
|
421 |
}
|
422 |
active_jobs -= 1
|
423 |
+
|
424 |
+
# Force garbage collection to clean up
|
425 |
+
gc.collect()
|
426 |
finally:
|
427 |
is_thread_running = False
|
428 |
|
429 |
+
def purge_old_results_thread():
|
430 |
+
"""Thread that periodically cleans up old job results to manage memory"""
|
431 |
+
while True:
|
432 |
+
try:
|
433 |
+
time.sleep(1800) # Run every 30 minutes
|
434 |
+
|
435 |
+
# Default threshold: 2 hours
|
436 |
+
threshold_time = time.time() - (2 * 3600)
|
437 |
+
|
438 |
+
# Track jobs to be removed
|
439 |
+
jobs_to_remove = []
|
440 |
+
for job_id, result in job_results.items():
|
441 |
+
# If the job has a timestamp and it's older than threshold
|
442 |
+
if result.get('timestamp', time.time()) < threshold_time:
|
443 |
+
jobs_to_remove.append(job_id)
|
444 |
+
|
445 |
+
# Remove the old jobs
|
446 |
+
for job_id in jobs_to_remove:
|
447 |
+
job_results.pop(job_id, None)
|
448 |
+
|
449 |
+
if jobs_to_remove:
|
450 |
+
print(f"Auto-purged {len(jobs_to_remove)} old job results")
|
451 |
+
# Force garbage collection
|
452 |
+
gc.collect()
|
453 |
+
except Exception as e:
|
454 |
+
print(f"Error in purge thread: {e}")
|
455 |
+
|
456 |
def ensure_worker_thread_running():
|
457 |
global generation_thread, is_thread_running
|
458 |
|
|
|
461 |
generation_thread = threading.Thread(target=worker_thread, daemon=True)
|
462 |
generation_thread.start()
|
463 |
|
464 |
+
def start_monitoring_threads():
|
465 |
+
"""Start all monitoring and maintenance threads"""
|
466 |
+
# Start model unloader thread
|
467 |
threading.Thread(target=model_unloader_thread, daemon=True).start()
|
468 |
+
|
469 |
+
# Start results purge thread
|
470 |
+
threading.Thread(target=purge_old_results_thread, daemon=True).start()
|
471 |
|
472 |
@app.route('/generate', methods=['POST'])
|
473 |
def generate_3d():
|
|
|
509 |
def job_status(job_id):
|
510 |
if job_id in job_results:
|
511 |
result = job_results[job_id]
|
512 |
+
# Return the result
|
513 |
return jsonify(result)
|
514 |
else:
|
515 |
# Job is still in progress
|
|
|
522 |
@app.route('/download/<filename>', methods=['GET'])
|
523 |
def download_file(filename):
|
524 |
try:
|
525 |
+
file_path = os.path.join(output_dir, filename)
|
526 |
+
if not os.path.exists(file_path):
|
527 |
+
return jsonify({"error": "File not found"}), 404
|
528 |
+
|
529 |
+
return send_file(file_path, as_attachment=True)
|
530 |
except Exception as e:
|
531 |
+
return jsonify({"error": str(e)}), 500
|
532 |
|
533 |
@app.route('/health', methods=['GET'])
|
534 |
def health_check():
|
|
|
562 |
if last_usage_time is not None:
|
563 |
model_inactive = f"{(time.time() - last_usage_time) / 60:.1f} minutes"
|
564 |
|
565 |
+
# Number of saved jobs
|
566 |
+
saved_jobs = len(job_results)
|
567 |
+
|
568 |
return jsonify({
|
569 |
"status": "ok",
|
570 |
"message": "Service is running",
|
|
|
573 |
"cpu_usage": cpu_usage,
|
574 |
"queue_size": queue_size,
|
575 |
"active_jobs": active_jobs,
|
576 |
+
"saved_jobs": saved_jobs,
|
577 |
"worker_running": is_thread_running,
|
578 |
"models_loaded": models_loaded,
|
579 |
"model_inactive_time": model_inactive
|
|
|
639 |
"success": true,
|
640 |
"message": "3D model generated successfully",
|
641 |
"glb_url": "/download/abc123.glb",
|
642 |
+
"obj_url": "/download/abc123.obj",
|
643 |
+
"ply_url": "/download/abc123.ply"
|
644 |
}
|
645 |
</pre>
|
646 |
|
647 |
<h3>Step 3: Download the files</h3>
|
648 |
+
<p>Use the provided URLs to download the GLB, OBJ, and PLY files.</p>
|
649 |
|
650 |
<h2>Health Check:</h2>
|
651 |
<pre>GET /health</pre>
|
|
|
687 |
"error": str(e)
|
688 |
}), 500
|
689 |
|
690 |
+
@app.route('/force-gc', methods=['POST'])
|
691 |
+
def force_garbage_collection():
|
692 |
+
"""Endpoint to manually trigger garbage collection"""
|
693 |
+
try:
|
694 |
+
# Get current memory usage
|
695 |
+
before_mem = psutil.Process().memory_info().rss / (1024**3)
|
696 |
+
|
697 |
+
# Force garbage collection
|
698 |
+
gc.collect()
|
699 |
+
torch.cuda.empty_cache() if torch.cuda.is_available() else None
|
700 |
+
|
701 |
+
# Get memory usage after GC
|
702 |
+
after_mem = psutil.Process().memory_info().rss / (1024**3)
|
703 |
+
freed = before_mem - after_mem
|
704 |
+
|
705 |
+
return jsonify({
|
706 |
+
"success": True,
|
707 |
+
"message": f"Garbage collection completed",
|
708 |
+
"before_memory_gb": round(before_mem, 2),
|
709 |
+
"after_memory_gb": round(after_mem, 2),
|
710 |
+
"freed_memory_gb": round(freed, 2) if freed > 0 else 0
|
711 |
+
})
|
712 |
+
except Exception as e:
|
713 |
+
return jsonify({
|
714 |
+
"success": False,
|
715 |
+
"error": str(e)
|
716 |
+
}), 500
|
717 |
+
|
718 |
if __name__ == '__main__':
|
719 |
+
# Start all monitoring threads
|
720 |
+
start_monitoring_threads()
|
721 |
+
|
722 |
+
# Start the worker thread
|
723 |
ensure_worker_thread_running()
|
|
|
724 |
|
725 |
# Recommended to run with gunicorn for production with increased timeout:
|
726 |
# $ gunicorn app:app --bind 0.0.0.0:7860 --timeout 300 --workers 1
|