File size: 8,300 Bytes
8c42b67
 
 
37341dc
8c42b67
 
dc71ffd
d3a2e7d
37341dc
474cb5c
8c42b67
dc71ffd
 
8c42b67
 
12f4836
8c42b67
 
 
 
 
37341dc
 
 
8c42b67
 
 
 
 
 
 
 
 
 
 
dc71ffd
 
73dc11f
8bfeef6
 
 
 
8c42b67
 
 
 
 
 
 
 
 
37341dc
 
8c42b67
 
 
37341dc
8c42b67
37341dc
 
8c42b67
 
37341dc
 
8c42b67
 
 
 
37341dc
 
8c42b67
 
37341dc
 
8bfeef6
37341dc
20f9b9b
 
 
 
 
 
37341dc
 
 
 
8c42b67
 
474cb5c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
37341dc
 
 
 
 
 
474cb5c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
37341dc
 
474cb5c
 
 
 
37341dc
474cb5c
 
 
 
 
 
 
eec4de5
 
 
474cb5c
eec4de5
474cb5c
8c42b67
fb283a4
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
import os
import requests
import pdfplumber
from flask import Flask, render_template, request, redirect, url_for, flash, send_file
from werkzeug.utils import secure_filename
from sentence_transformers import SentenceTransformer, util
from transformers import AutoTokenizer
from fpdf import FPDF  # Usa fpdf per evitare errori con unicode
from collections import Counter
from io import BytesIO  # Importa BytesIO per generare PDF in memoria

# Usa Hugging Face tokenizer
tokenizer = AutoTokenizer.from_pretrained('bert-base-uncased')

app = Flask(__name__)
app.secret_key = os.environ.get("SECRET_KEY", "NORUS_secretkey_05")
app.config["UPLOAD_FOLDER"] = "uploads"
os.makedirs(app.config["UPLOAD_FOLDER"], exist_ok=True)

model = SentenceTransformer("allenai/scibert_scivocab_uncased")

last_results = []
last_common_keywords = []

def extract_pdf_text(pdf_path):
    text = ""
    try:
        with pdfplumber.open(pdf_path) as pdf:
            for page in pdf.pages:
                text += page.extract_text() or " "
    except Exception as e:
        print(f"Errore estrazione testo: {e}")
    return text.lower().strip()

def preprocess_text(text):
    # Tokenizza il testo usando il tokenizer di Hugging Face
    tokens = tokenizer.tokenize(text.lower())
    
    # Filtra le parole per mantenere solo quelle significative (eliminando numeri, simboli non scientifici, ecc.)
    tokens = [token for token in tokens if len(token) > 3 and token.isalpha()]
    
    return tokens

def calculate_token_overlap(text1, text2):
    tokens1 = set(text1.split())
    tokens2 = set(text2.split())
    overlap = len(tokens1 & tokens2)
    return round((overlap / max(len(tokens1), 1)) * 100, 2)

def calculate_oui(similarity, token_overlap, alpha=0.7, beta=0.3):
    oui = alpha * (1 - similarity / 100) + beta * (1 - token_overlap / 100)
    result = round(oui * 100, 2)
    return 0.0 if result == -0.0 else result

def validate_document(pdf_path, comparison_sources, method="local", titles=None):
    pdf_text = extract_pdf_text(pdf_path)
    pdf_tokens = preprocess_text(pdf_text)
    results = []
    all_keywords = []

    for i, doc in enumerate(comparison_sources):
        doc_text = extract_pdf_text(doc) if method == "local" else doc
        doc_tokens = preprocess_text(doc_text)

        similarity = util.pytorch_cos_sim(
            model.encode(pdf_text, convert_to_tensor=True),
            model.encode(doc_text, convert_to_tensor=True)
        ).item() * 100

        token_overlap = calculate_token_overlap(" ".join(pdf_tokens), " ".join(doc_tokens))
        oui = calculate_oui(similarity, token_overlap)
        title = titles[i] if titles and i < len(titles) else os.path.basename(doc) if method == "local" else "Unknown Title"

        common_keywords = list(set(pdf_tokens) & set(doc_tokens))[:5]
        all_keywords.extend(common_keywords)

        results.append({
            "title": title,
            "similarity": round(similarity, 2),
            "token_overlap": round(token_overlap, 2),
            "oui": round(oui, 2)
        })

    global last_results, last_common_keywords
    last_results = results
    last_common_keywords = Counter(all_keywords).most_common(10)
    return results

def fetch_pubmed_details(article_id):
    base_url = "https://eutils.ncbi.nlm.nih.gov/entrez/eutils/efetch.fcgi"
    params = {"db": "pubmed", "id": article_id, "retmode": "xml"}
    try:
        response = requests.get(base_url, params=params)
        response.raise_for_status()
        import xml.etree.ElementTree as ET
        root = ET.fromstring(response.text)
        title = root.find(".//ArticleTitle").text or "No Title"
        abstract = root.find(".//AbstractText").text or "No Abstract"
        keywords = root.findall(".//Keyword")
        keyword_text = " ".join([kw.text for kw in keywords if kw.text]) if keywords else ""
        return title, f"{abstract} {keyword_text}"
    except Exception as e:
        print(f"Errore recupero abstract: {e}")
        return "No Title", "No Abstract"

def fetch_pubmed(query, year_start, year_end, max_results=10):
    base_url = "https://eutils.ncbi.nlm.nih.gov/entrez/eutils/esearch.fcgi"
    params = {
        "db": "pubmed",
        "term": f"{query} AND ({year_start}[PDAT] : {year_end}[PDAT])",
        "retmax": max_results,
        "retmode": "json"
    }
    try:
        response = requests.get(base_url, params=params)
        response.raise_for_status()
        return response.json().get("esearchresult", {}).get("idlist", [])
    except Exception as e:
        print(f"Errore fetch PubMed: {e}")
        return []

@app.route("/")
def index():
    return render_template("NORUS.html")

@app.route("/validate", methods=["POST"])
def validate():
    pdf_file = request.files.get("pdf_file")
    analysis_type = request.form.get("analysis_type")
    query = request.form.get("query", "").strip()

    if not pdf_file:
        flash("Carica un file PDF valido.", "error")
        return redirect(url_for("index"))

    filename = secure_filename(pdf_file.filename)
    pdf_path = os.path.join(app.config["UPLOAD_FOLDER"], filename)
    pdf_file.save(pdf_path)

    if analysis_type == "local":
        comparison_files = request.files.getlist("comparison_files")
        saved_paths = []
        for file in comparison_files:
            if file and file.filename.endswith(".pdf"):
                fname = secure_filename(file.filename)
                path = os.path.join(app.config["UPLOAD_FOLDER"], fname)
                file.save(path)
                saved_paths.append(path)
        if not saved_paths:
            flash("Nessun file di confronto caricato.", "error")
            return redirect(url_for("index"))
        results = validate_document(pdf_path, saved_paths, method="local")
    else:
        year_start = request.form.get("year_start", "2000")
        year_end = request.form.get("year_end", "2025")
        num_articles = int(request.form.get("num_articles", "10"))
        pubmed_ids = fetch_pubmed(query, year_start, year_end, num_articles)
        pubmed_results = [fetch_pubmed_details(id_) for id_ in pubmed_ids]
        results = validate_document(pdf_path, [r[1] for r in pubmed_results], method="pubmed", titles=[r[0] for r in pubmed_results])

    return render_template("NORUS.html", results=results, keywords=last_common_keywords)

@app.route("/download_report", methods=["POST"])
def download_report():
    if not last_results:
        flash("Nessun risultato da esportare.", "error")
        return redirect(url_for("index"))

    pdf = FPDF()
    pdf.add_page()
    pdf.set_font("Arial", "B", 16)
    pdf.cell(0, 10, "NORUS Tool - Report Analisi", ln=True, align="C")
    pdf.ln(10)
    
    # Usa un font per il testo con i simboli in formato ASCII
    pdf.set_font('Arial', '', 12)
    pdf.multi_cell(0, 10, "Indice OUI = alpha(1 - sim/100) + beta(1 - overlap/100), con alpha = 0.7 e beta = 0.3.\nValori più bassi di OUI indicano maggiore similarità semantica e testuale.")

    pdf.ln(5)
    pdf.set_font("Arial", "B", 12)
    pdf.cell(90, 10, "Titolo", 1)
    pdf.cell(30, 10, "Sim %", 1)
    pdf.cell(30, 10, "Overlap %", 1)
    pdf.cell(30, 10, "OUI", 1)
    pdf.ln()

    pdf.set_font("Arial", "", 11)
    for res in last_results:
        title = res["title"][:40] + "..." if len(res["title"]) > 43 else res["title"]
        pdf.cell(90, 10, title, 1)
        pdf.cell(30, 10, str(res["similarity"]), 1)
        pdf.cell(30, 10, str(res["token_overlap"]), 1)
        pdf.cell(30, 10, str(res["oui"]), 1)
        pdf.ln()

    if last_common_keywords:
        pdf.ln(6)
        pdf.set_font("Arial", "B", 12)
        pdf.cell(0, 10, "Parole chiave comuni:", ln=True)
        pdf.set_font("Arial", "", 11)
        for kw, count in last_common_keywords:
            pdf.cell(0, 10, f"- {kw} ({count})", ln=True)

    pdf.set_y(-20)
    pdf.set_font("Arial", "I", 9)
    pdf.cell(0, 10, "© 2025 NORUS Tool", 0, 0, "C")

    # Salva il PDF nella cartella uploads
    output_path = os.path.join(app.config["UPLOAD_FOLDER"], "NORUS_Report.pdf")
    pdf.output(output_path, 'F')  # Salva il file sul disco

    return send_file(output_path, as_attachment=True)  # Forza il download del file PDF

if __name__ == "__main__":
    app.run(debug=True, host="0.0.0.0", port=7860)