|
import os |
|
import requests |
|
import pdfplumber |
|
import numpy as np |
|
from flask import Flask, render_template, request, redirect, url_for, flash |
|
from werkzeug.utils import secure_filename |
|
from sentence_transformers import SentenceTransformer, util |
|
import nltk |
|
from nltk.stem import WordNetLemmatizer, PorterStemmer |
|
from nltk.tokenize import word_tokenize |
|
from nltk.corpus import stopwords |
|
|
|
nltk.download("punkt") |
|
nltk.download("wordnet") |
|
nltk.download("stopwords") |
|
|
|
lemmatizer = WordNetLemmatizer() |
|
stemmer = PorterStemmer() |
|
stop_words = set(stopwords.words("english")) |
|
|
|
app = Flask(__name__) |
|
app.config["UPLOAD_FOLDER"] = "uploads" |
|
os.makedirs(app.config["UPLOAD_FOLDER"], exist_ok=True) |
|
|
|
model = SentenceTransformer("allenai/scibert_scivocab_uncased") |
|
|
|
def extract_pdf_text(pdf_path): |
|
text = "" |
|
try: |
|
with pdfplumber.open(pdf_path) as pdf: |
|
for page in pdf.pages: |
|
text += page.extract_text() or " " |
|
except Exception as e: |
|
print(f"Errore estrazione testo: {e}") |
|
return text.lower().strip() |
|
|
|
def preprocess_text(text): |
|
text = text.lower() |
|
words = word_tokenize(text) |
|
words = [stemmer.stem(lemmatizer.lemmatize(w)) for w in words if w.isalnum() and w not in stop_words] |
|
return " ".join(words) |
|
|
|
def calculate_token_overlap(text1, text2): |
|
tokens1 = set(text1.split()) |
|
tokens2 = set(text2.split()) |
|
overlap = len(tokens1 & tokens2) |
|
return round((overlap / max(len(tokens1), 1)) * 100, 2) |
|
|
|
def calculate_oui(similarity, token_overlap, alpha=0.7, beta=0.3): |
|
oui = alpha * (1 - similarity / 100) + beta * (1 - token_overlap / 100) |
|
return round(max(0, min(oui * 100, 100)), 2) |
|
|
|
def validate_document(pdf_path, comparison_sources, method="local", titles=None): |
|
pdf_text = extract_pdf_text(pdf_path) |
|
results = [] |
|
for i, doc in enumerate(comparison_sources): |
|
doc_text = extract_pdf_text(doc) if method == "local" else doc |
|
similarity = util.pytorch_cos_sim( |
|
model.encode(pdf_text, convert_to_tensor=True), |
|
model.encode(doc_text, convert_to_tensor=True) |
|
).item() * 100 |
|
token_overlap = calculate_token_overlap(pdf_text, doc_text) |
|
oui = calculate_oui(similarity, token_overlap) |
|
title = titles[i] if titles and i < len(titles) else os.path.basename(doc) if method == "local" else "Unknown Title" |
|
results.append({"title": title, "similarity": round(similarity, 2), "token_overlap": round(token_overlap, 2), "oui": round(oui, 2)}) |
|
return results |
|
|
|
def fetch_pubmed_details(article_id): |
|
base_url = "https://eutils.ncbi.nlm.nih.gov/entrez/eutils/efetch.fcgi" |
|
params = {"db": "pubmed", "id": article_id, "retmode": "xml"} |
|
try: |
|
response = requests.get(base_url, params=params) |
|
response.raise_for_status() |
|
import xml.etree.ElementTree as ET |
|
root = ET.fromstring(response.text) |
|
title = root.find(".//ArticleTitle").text if root.find(".//ArticleTitle") is not None else "No Title" |
|
abstract = root.find(".//AbstractText").text if root.find(".//AbstractText") is not None else "No Abstract" |
|
keywords = root.findall(".//Keyword") |
|
keyword_text = " ".join([kw.text for kw in keywords if kw.text]) if keywords else "No Keywords" |
|
print(f"\nπ ARTICOLO RECUPERATO\nπ Titolo: {title}\nπ Abstract: {abstract[:500]}...\nπ Keywords: {keyword_text}\n") |
|
return title, f"{abstract} {keyword_text}" |
|
except requests.exceptions.RequestException as e: |
|
print(f"Errore recupero abstract: {e}") |
|
return "No Title", "No Abstract" |
|
|
|
def fetch_pubmed(query, year_start, year_end, max_results=10): |
|
base_url = "https://eutils.ncbi.nlm.nih.gov/entrez/eutils/esearch.fcgi" |
|
params = {"db": "pubmed", "term": f"{query} AND ({year_start}[PDAT] : {year_end}[PDAT])", "retmax": max_results, "retmode": "json"} |
|
try: |
|
response = requests.get(base_url, params=params) |
|
response.raise_for_status() |
|
return response.json().get("esearchresult", {}).get("idlist", []) |
|
except requests.exceptions.RequestException as e: |
|
print(f"Errore recupero articoli PubMed: {e}") |
|
|
|
return [] |
|
|
|
@app.route("/") |
|
def index(): |
|
return render_template("NORUS.html") |
|
|
|
@app.route("/validate", methods=["POST"]) |
|
def validate(): |
|
pdf_file = request.files.get("pdf_file") |
|
analysis_type = request.form.get("analysis_type") |
|
local_dir = request.form.get("local_directory", "").strip() |
|
query = request.form.get("query", "").strip() |
|
if not pdf_file: |
|
flash("Carica un file PDF valido.", "error") |
|
return redirect(url_for("index")) |
|
filename = secure_filename(pdf_file.filename) |
|
pdf_path = os.path.join(app.config["UPLOAD_FOLDER"], filename) |
|
pdf_file.save(pdf_path) |
|
results = [] |
|
if analysis_type == "local": |
|
if not os.path.isdir(local_dir): |
|
flash("Seleziona una directory valida.", "error") |
|
return redirect(url_for("index")) |
|
comparison_files = [os.path.join(local_dir, f) for f in os.listdir(local_dir) if f.endswith(".pdf")] |
|
if not comparison_files: |
|
flash("La directory non contiene PDF.", "error") |
|
return redirect(url_for("index")) |
|
results = validate_document(pdf_path, comparison_files, method="local") |
|
elif analysis_type == "pubmed": |
|
year_start = request.form.get("year_start", "2000") |
|
year_end = request.form.get("year_end", "2025") |
|
num_articles = int(request.form.get("num_articles", "10")) |
|
pubmed_ids = fetch_pubmed(query, year_start, year_end, num_articles) |
|
pubmed_results = [fetch_pubmed_details(article_id) for article_id in pubmed_ids] |
|
results = validate_document(pdf_path, [result[1] for result in pubmed_results], method="pubmed", titles=[result[0] for result in pubmed_results]) |
|
return render_template("NORUS.html", results=results) |
|
|
|
if __name__ == "__main__": |
|
app.run(debug=True, port=7860) |
|
|