|
import os |
|
import requests |
|
import pdfplumber |
|
from flask import Flask, render_template, request, redirect, url_for, flash, send_file |
|
from werkzeug.utils import secure_filename |
|
from sentence_transformers import SentenceTransformer, util |
|
from transformers import AutoTokenizer |
|
from fpdf import FPDF |
|
from collections import Counter |
|
from io import BytesIO |
|
|
|
tokenizer = AutoTokenizer.from_pretrained('bert-base-uncased') |
|
|
|
app = Flask(__name__) |
|
app.secret_key = os.environ.get("SECRET_KEY", "NORUS_secretkey_05") |
|
app.config["UPLOAD_FOLDER"] = "uploads" |
|
os.makedirs(app.config["UPLOAD_FOLDER"], exist_ok=True) |
|
|
|
model = SentenceTransformer("allenai/scibert_scivocab_uncased") |
|
|
|
last_results = [] |
|
last_common_keywords = [] |
|
|
|
def extract_pdf_text(pdf_path): |
|
text = "" |
|
try: |
|
with pdfplumber.open(pdf_path) as pdf: |
|
for page in pdf.pages: |
|
text += page.extract_text() or " " |
|
except Exception as e: |
|
print(f"Errore estrazione testo: {e}") |
|
return text.lower().strip() |
|
|
|
def preprocess_text(text): |
|
tokens = tokenizer.tokenize(text.lower()) |
|
tokens = [token for token in tokens if len(token) > 3 and token.isalpha()] |
|
return tokens |
|
|
|
def calculate_token_overlap(text1, text2): |
|
tokens1 = set(text1.split()) |
|
tokens2 = set(text2.split()) |
|
overlap = len(tokens1 & tokens2) |
|
return round((overlap / max(len(tokens1), 1)) * 100, 2) |
|
|
|
def calculate_oui(similarity, token_overlap, alpha=0.7, beta=0.3): |
|
oui = alpha * (1 - similarity / 100) + beta * (1 - token_overlap / 100) |
|
result = round(oui * 100, 2) |
|
return 0.0 if result == -0.0 else result |
|
|
|
def validate_document(pdf_path, comparison_sources, method="local", titles=None): |
|
pdf_text = extract_pdf_text(pdf_path) |
|
pdf_tokens = preprocess_text(pdf_text) |
|
results = [] |
|
all_keywords = [] |
|
|
|
for i, doc in enumerate(comparison_sources): |
|
doc_text = extract_pdf_text(doc) if method == "local" else doc |
|
doc_tokens = preprocess_text(doc_text) |
|
|
|
similarity = util.pytorch_cos_sim( |
|
model.encode(pdf_text, convert_to_tensor=True), |
|
model.encode(doc_text, convert_to_tensor=True) |
|
).item() * 100 |
|
|
|
token_overlap = calculate_token_overlap(" ".join(pdf_tokens), " ".join(doc_tokens)) |
|
oui = calculate_oui(similarity, token_overlap) |
|
title = titles[i] if titles and i < len(titles) else os.path.basename(doc) if method == "local" else "Unknown Title" |
|
|
|
common_keywords = list(set(pdf_tokens) & set(doc_tokens))[:5] |
|
all_keywords.extend(common_keywords) |
|
|
|
results.append({ |
|
"title": title, |
|
"similarity": round(similarity, 2), |
|
"token_overlap": round(token_overlap, 2), |
|
"oui": round(oui, 2) |
|
}) |
|
|
|
global last_results, last_common_keywords |
|
last_results = results |
|
last_common_keywords = Counter(all_keywords).most_common(10) |
|
return results |
|
|
|
def fetch_pubmed_details(article_id): |
|
base_url = "https://eutils.ncbi.nlm.nih.gov/entrez/eutils/efetch.fcgi" |
|
params = {"db": "pubmed", "id": article_id, "retmode": "xml"} |
|
try: |
|
response = requests.get(base_url, params=params) |
|
response.raise_for_status() |
|
import xml.etree.ElementTree as ET |
|
root = ET.fromstring(response.text) |
|
title = root.find(".//ArticleTitle").text if root.find(".//ArticleTitle") is not None else "No Title" |
|
abstract = root.find(".//AbstractText").text if root.find(".//AbstractText") is not None else "No Abstract" |
|
keywords = root.findall(".//Keyword") |
|
keyword_text = " ".join([kw.text for kw in keywords if kw.text]) if keywords else "" |
|
return title, f"{abstract} {keyword_text}" |
|
except Exception as e: |
|
print(f"Errore recupero abstract: {e}") |
|
return None |
|
|
|
def fetch_pubmed(query, year_start, year_end, max_results=10): |
|
base_url = "https://eutils.ncbi.nlm.nih.gov/entrez/eutils/esearch.fcgi" |
|
params = { |
|
"db": "pubmed", |
|
"term": f"{query} AND ({year_start}[PDAT] : {year_end}[PDAT])", |
|
"retmax": max_results, |
|
"retmode": "json", |
|
"sort": "relevance" |
|
} |
|
try: |
|
response = requests.get(base_url, params=params) |
|
response.raise_for_status() |
|
id_list = response.json().get("esearchresult", {}).get("idlist", []) |
|
return id_list |
|
except Exception as e: |
|
print(f"Errore fetch PubMed: {e}") |
|
return [] |
|
|
|
@app.route("/") |
|
def index(): |
|
return render_template("NORUS.html") |
|
|
|
@app.route("/validate", methods=["POST"]) |
|
def validate(): |
|
pdf_file = request.files.get("pdf_file") |
|
analysis_type = request.form.get("analysis_type") |
|
query = request.form.get("query", "").strip() |
|
|
|
if not pdf_file: |
|
flash("Carica un file PDF valido.", "error") |
|
return redirect(url_for("index")) |
|
|
|
filename = secure_filename(pdf_file.filename) |
|
pdf_path = os.path.join(app.config["UPLOAD_FOLDER"], filename) |
|
pdf_file.save(pdf_path) |
|
|
|
if analysis_type == "local": |
|
comparison_files = request.files.getlist("comparison_files") |
|
saved_paths = [] |
|
for file in comparison_files: |
|
if file and file.filename.endswith(".pdf"): |
|
fname = secure_filename(file.filename) |
|
path = os.path.join(app.config["UPLOAD_FOLDER"], fname) |
|
file.save(path) |
|
saved_paths.append(path) |
|
if not saved_paths: |
|
flash("Nessun file di confronto caricato.", "error") |
|
return redirect(url_for("index")) |
|
results = validate_document(pdf_path, saved_paths, method="local") |
|
else: |
|
year_start = request.form.get("year_start", "2000") |
|
year_end = request.form.get("year_end", "2025") |
|
num_articles = int(request.form.get("num_articles", "10")) |
|
pubmed_ids = fetch_pubmed(query, year_start, year_end, num_articles) |
|
|
|
if not pubmed_ids: |
|
flash("❌ Nessun articolo trovato su PubMed per questa ricerca.", "error") |
|
return redirect(url_for("index")) |
|
|
|
pubmed_results = [] |
|
for id_ in pubmed_ids: |
|
result = fetch_pubmed_details(id_) |
|
if result: |
|
pubmed_results.append(result) |
|
|
|
|
|
pubmed_texts = [r[1] for r in pubmed_results] |
|
pubmed_titles = [r[0] for r in pubmed_results] |
|
|
|
results = validate_document(pdf_path, pubmed_texts, method="pubmed", titles=pubmed_titles) |
|
|
|
return render_template("NORUS.html", results=results, keywords=last_common_keywords) |
|
|
|
@app.route("/download_report", methods=["POST"]) |
|
def download_report(): |
|
if not last_results: |
|
flash("Nessun risultato da esportare.", "error") |
|
return redirect(url_for("index")) |
|
|
|
pdf = FPDF() |
|
pdf.add_page() |
|
pdf.set_font("Arial", "B", 16) |
|
pdf.cell(0, 10, "NORUS Tool - Report Analisi", ln=True, align="C") |
|
pdf.ln(10) |
|
pdf.set_font('Arial', '', 12) |
|
pdf.multi_cell(0, 10, "Indice OUI = alpha(1 - sim/100) + beta(1 - overlap/100), con alpha = 0.7 e beta = 0.3.\nValori più bassi di OUI indicano maggiore similarità semantica e testuale.") |
|
pdf.ln(5) |
|
pdf.set_font("Arial", "B", 12) |
|
pdf.cell(90, 10, "Titolo", 1) |
|
pdf.cell(30, 10, "Sim %", 1) |
|
pdf.cell(30, 10, "Overlap %", 1) |
|
pdf.cell(30, 10, "OUI", 1) |
|
pdf.ln() |
|
|
|
pdf.set_font("Arial", "", 11) |
|
for res in last_results: |
|
title = res["title"][:40] + "..." if len(res["title"]) > 43 else res["title"] |
|
pdf.cell(90, 10, title, 1) |
|
pdf.cell(30, 10, str(res["similarity"]), 1) |
|
pdf.cell(30, 10, str(res["token_overlap"]), 1) |
|
pdf.cell(30, 10, str(res["oui"]), 1) |
|
pdf.ln() |
|
|
|
if last_common_keywords: |
|
pdf.ln(6) |
|
pdf.set_font("Arial", "B", 12) |
|
pdf.cell(0, 10, "Parole chiave comuni:", ln=True) |
|
pdf.set_font("Arial", "", 11) |
|
for kw, count in last_common_keywords: |
|
pdf.cell(0, 10, f"- {kw} ({count})", ln=True) |
|
|
|
pdf.set_y(-20) |
|
pdf.set_font("Arial", "I", 9) |
|
pdf.cell(0, 10, "© 2025 NORUS Tool", 0, 0, "C") |
|
|
|
output_path = os.path.join(app.config["UPLOAD_FOLDER"], "NORUS_Report.pdf") |
|
pdf.output(output_path, 'F') |
|
|
|
return send_file(output_path, as_attachment=True) |
|
|
|
if __name__ == "__main__": |
|
app.run(debug=True, host="0.0.0.0", port=7860) |
|
|
|
|