import gradio as gr def format_params(params): if params >= 1e9: return f"{params / 1e9:.2f}B" elif params >= 1e6: return f"{params / 1e6:.2f}M" return str(params) def calculate_training_memory(params, precision, batch_size, seq_length, num_heads, head_dim, num_layers): bytes_per_param = 2 if precision in ["FP16/BF16", "BF16"] else 4 # Model Weights model_memory = params * bytes_per_param # Optimizer States (Adam) optimizer_memory = model_memory * 2 # Gradients gradient_memory = model_memory # Activation Memory (approximate formula) activation_memory = batch_size * seq_length * num_heads * head_dim * num_layers * bytes_per_param # Total Training Memory total_memory = model_memory + optimizer_memory + gradient_memory + activation_memory return f"Model Weights: {model_memory / 1e9:.2f} GB\nOptimizer: {optimizer_memory / 1e9:.2f} GB\nGradients: {gradient_memory / 1e9:.2f} GB\nActivation Memory: {activation_memory / 1e9:.2f} GB\nTotal Training Memory: {total_memory / 1e9:.2f} GB" def calculate_inference_memory(params, precision, batch_size, seq_length, num_heads, head_dim, num_layers): bytes_per_param = 2 if precision in ["FP16/BF16", "BF16"] else 4 # Model Weights model_memory = params * bytes_per_param # KV Cache kv_cache_memory = batch_size * seq_length * num_heads * head_dim * 2 * num_layers * bytes_per_param # Total Inference Memory total_memory = model_memory + kv_cache_memory return f"Model Weights: {model_memory / 1e9:.2f} GB\nKV Cache: {kv_cache_memory / 1e9:.2f} GB\nTotal Inference Memory: {total_memory / 1e9:.2f} GB" def calculate_kv_cache(batch_size, seq_length, num_heads, head_dim, num_layers, precision): bytes_per_param = 2 if precision in ["FP16/BF16", "BF16"] else 4 # KV Cache Calculation kv_cache_memory = batch_size * seq_length * num_heads * head_dim * 2 * num_layers * bytes_per_param return f"KV Cache Memory: {kv_cache_memory / 1e9:.2f} GB" with gr.Blocks() as app: gr.Markdown("# GPU Memory Calculator for Transformer Models") with gr.Tabs(): with gr.Tab("Training Memory Calculation"): with gr.Row(): params = gr.Number(label="Number of Parameters (e.g., 175B = 175e9)", value=175e9) precision = gr.Radio(["FP16/BF16", "FP32"], label="Precision", value="FP16/BF16") with gr.Row(): batch_size = gr.Number(label="Batch Size", value=1) seq_length = gr.Number(label="Sequence Length", value=2048) with gr.Row(): num_heads = gr.Number(label="Number of Attention Heads", value=96) head_dim = gr.Number(label="Head Dimension", value=128) num_layers = gr.Number(label="Number of Layers", value=96) train_button = gr.Button("Calculate Training Memory") train_output = gr.Textbox(label="Training Memory Usage") train_button.click(calculate_training_memory, [params, precision, batch_size, seq_length, num_heads, head_dim, num_layers], train_output) with gr.Tab("Inference Memory Calculation"): with gr.Row(): params_inf = gr.Number(label="Number of Parameters (e.g., 175B = 175e9)", value=175e9) precision_inf = gr.Radio(["FP16/BF16", "FP32"], label="Precision", value="FP16/BF16") with gr.Row(): batch_size_inf = gr.Number(label="Batch Size", value=1) seq_length_inf = gr.Number(label="Sequence Length", value=2048) with gr.Row(): num_heads_inf = gr.Number(label="Number of Attention Heads", value=96) head_dim_inf = gr.Number(label="Head Dimension", value=128) num_layers_inf = gr.Number(label="Number of Layers", value=96) infer_button = gr.Button("Calculate Inference Memory") infer_output = gr.Textbox(label="Inference Memory Usage") infer_button.click(calculate_inference_memory, [params_inf, precision_inf, batch_size_inf, seq_length_inf, num_heads_inf, head_dim_inf, num_layers_inf], infer_output) with gr.Tab("KV Cache Calculation"): with gr.Row(): batch_size_kv = gr.Number(label="Batch Size", value=1) seq_length_kv = gr.Number(label="Sequence Length", value=2048) with gr.Row(): num_heads_kv = gr.Number(label="Number of Attention Heads", value=96) head_dim_kv = gr.Number(label="Head Dimension", value=128) num_layers_kv = gr.Number(label="Number of Layers", value=96) precision_kv = gr.Radio(["FP16/BF16", "FP32"], label="Precision", value="FP16/BF16") kv_button = gr.Button("Calculate KV Cache Memory") kv_output = gr.Textbox(label="KV Cache Memory Usage") kv_button.click(calculate_kv_cache, [batch_size_kv, seq_length_kv, num_heads_kv, head_dim_kv, num_layers_kv, precision_kv], kv_output) app.launch()