Manoj Acharya
commited on
Commit
·
3c83b5b
1
Parent(s):
0abf63d
Add application file
Browse files
app.py
ADDED
@@ -0,0 +1,93 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
|
3 |
+
def calculate_training_memory(params, precision, batch_size, seq_length, num_heads, head_dim, num_layers):
|
4 |
+
bytes_per_param = 2 if precision == "FP16" else 4
|
5 |
+
|
6 |
+
# Model Weights
|
7 |
+
model_memory = params * bytes_per_param
|
8 |
+
|
9 |
+
# Optimizer States (Adam)
|
10 |
+
optimizer_memory = model_memory * 2
|
11 |
+
|
12 |
+
# Gradients
|
13 |
+
gradient_memory = model_memory
|
14 |
+
|
15 |
+
# Activation Memory (approximate formula)
|
16 |
+
activation_memory = batch_size * seq_length * num_heads * head_dim * num_layers * bytes_per_param
|
17 |
+
|
18 |
+
# Total Training Memory
|
19 |
+
total_memory = model_memory + optimizer_memory + gradient_memory + activation_memory
|
20 |
+
|
21 |
+
return f"Model Weights: {model_memory / 1e9:.2f} GB\nOptimizer: {optimizer_memory / 1e9:.2f} GB\nGradients: {gradient_memory / 1e9:.2f} GB\nActivation Memory: {activation_memory / 1e9:.2f} GB\nTotal Training Memory: {total_memory / 1e9:.2f} GB"
|
22 |
+
|
23 |
+
def calculate_inference_memory(params, precision, batch_size, seq_length, num_heads, head_dim, num_layers):
|
24 |
+
bytes_per_param = 2 if precision == "FP16" else 4
|
25 |
+
|
26 |
+
# Model Weights
|
27 |
+
model_memory = params * bytes_per_param
|
28 |
+
|
29 |
+
# KV Cache
|
30 |
+
kv_cache_memory = batch_size * seq_length * num_heads * head_dim * 2 * num_layers * bytes_per_param
|
31 |
+
|
32 |
+
# Total Inference Memory
|
33 |
+
total_memory = model_memory + kv_cache_memory
|
34 |
+
|
35 |
+
return f"Model Weights: {model_memory / 1e9:.2f} GB\nKV Cache: {kv_cache_memory / 1e9:.2f} GB\nTotal Inference Memory: {total_memory / 1e9:.2f} GB"
|
36 |
+
|
37 |
+
def calculate_kv_cache(batch_size, seq_length, num_heads, head_dim, num_layers, precision):
|
38 |
+
bytes_per_param = 2 if precision == "FP16" else 4
|
39 |
+
|
40 |
+
# KV Cache Calculation
|
41 |
+
kv_cache_memory = batch_size * seq_length * num_heads * head_dim * 2 * num_layers * bytes_per_param
|
42 |
+
|
43 |
+
return f"KV Cache Memory: {kv_cache_memory / 1e9:.2f} GB"
|
44 |
+
|
45 |
+
with gr.Blocks() as app:
|
46 |
+
gr.Markdown("# GPU Memory Calculator for Transformer Models")
|
47 |
+
|
48 |
+
with gr.Tabs():
|
49 |
+
with gr.Tab("Training Memory Calculation"):
|
50 |
+
with gr.Row():
|
51 |
+
params = gr.Number(label="Number of Parameters (e.g., 175B = 175e9)", value=175e9)
|
52 |
+
precision = gr.Radio(["FP16", "FP32"], label="Precision", value="FP16")
|
53 |
+
with gr.Row():
|
54 |
+
batch_size = gr.Number(label="Batch Size", value=1)
|
55 |
+
seq_length = gr.Number(label="Sequence Length", value=2048)
|
56 |
+
with gr.Row():
|
57 |
+
num_heads = gr.Number(label="Number of Attention Heads", value=96)
|
58 |
+
head_dim = gr.Number(label="Head Dimension", value=128)
|
59 |
+
num_layers = gr.Number(label="Number of Layers", value=96)
|
60 |
+
train_button = gr.Button("Calculate Training Memory")
|
61 |
+
train_output = gr.Textbox(label="Training Memory Usage")
|
62 |
+
train_button.click(calculate_training_memory, [params, precision, batch_size, seq_length, num_heads, head_dim, num_layers], train_output)
|
63 |
+
|
64 |
+
with gr.Tab("Inference Memory Calculation"):
|
65 |
+
with gr.Row():
|
66 |
+
params_inf = gr.Number(label="Number of Parameters (e.g., 175B = 175e9)", value=175e9)
|
67 |
+
precision_inf = gr.Radio(["FP16", "FP32"], label="Precision", value="FP16")
|
68 |
+
with gr.Row():
|
69 |
+
batch_size_inf = gr.Number(label="Batch Size", value=1)
|
70 |
+
seq_length_inf = gr.Number(label="Sequence Length", value=2048)
|
71 |
+
with gr.Row():
|
72 |
+
num_heads_inf = gr.Number(label="Number of Attention Heads", value=96)
|
73 |
+
head_dim_inf = gr.Number(label="Head Dimension", value=128)
|
74 |
+
num_layers_inf = gr.Number(label="Number of Layers", value=96)
|
75 |
+
infer_button = gr.Button("Calculate Inference Memory")
|
76 |
+
infer_output = gr.Textbox(label="Inference Memory Usage")
|
77 |
+
infer_button.click(calculate_inference_memory, [params_inf, precision_inf, batch_size_inf, seq_length_inf, num_heads_inf, head_dim_inf, num_layers_inf], infer_output)
|
78 |
+
|
79 |
+
with gr.Tab("KV Cache Calculation"):
|
80 |
+
with gr.Row():
|
81 |
+
batch_size_kv = gr.Number(label="Batch Size", value=1)
|
82 |
+
seq_length_kv = gr.Number(label="Sequence Length", value=2048)
|
83 |
+
with gr.Row():
|
84 |
+
num_heads_kv = gr.Number(label="Number of Attention Heads", value=96)
|
85 |
+
head_dim_kv = gr.Number(label="Head Dimension", value=128)
|
86 |
+
num_layers_kv = gr.Number(label="Number of Layers", value=96)
|
87 |
+
precision_kv = gr.Radio(["FP16", "FP32"], label="Precision", value="FP16")
|
88 |
+
kv_button = gr.Button("Calculate KV Cache Memory")
|
89 |
+
kv_output = gr.Textbox(label="KV Cache Memory Usage")
|
90 |
+
kv_button.click(calculate_kv_cache, [batch_size_kv, seq_length_kv, num_heads_kv, head_dim_kv, num_layers_kv, precision_kv], kv_output)
|
91 |
+
|
92 |
+
app.launch()
|
93 |
+
|