Spaces:
Sleeping
Sleeping
changed to groq
Browse files
app.py
CHANGED
@@ -15,6 +15,7 @@ import queue
|
|
15 |
from langchain_openai import ChatOpenAI
|
16 |
from typing import List, Dict, Optional
|
17 |
from pydantic import BaseModel, Field, confloat
|
|
|
18 |
|
19 |
class SkillScore(BaseModel):
|
20 |
skill_name: str = Field(description="Name of the skill being scored")
|
@@ -231,6 +232,8 @@ class CompanyResearch(BaseModel):
|
|
231 |
interview_questions: List[str] = Field(
|
232 |
description="Strategic questions to ask during the interview"
|
233 |
)
|
|
|
|
|
234 |
resume_analyzer = Agent(
|
235 |
role= "Resume Optimization Expert",
|
236 |
goal= "Analyze resumes and provide structured optimization suggestions",
|
@@ -240,7 +243,7 @@ resume_analyzer = Agent(
|
|
240 |
providing actionable suggestions for improvement. Your recommendations always
|
241 |
focus on both human readability and ATS compatibility.""",
|
242 |
verbose=True,
|
243 |
-
|
244 |
# knowledge_sources=[pdf_source],
|
245 |
)
|
246 |
job_analyzer = Agent(
|
@@ -253,7 +256,7 @@ job_analyzer = Agent(
|
|
253 |
and soft skills requirements, and can evaluate experience levels accurately.""",
|
254 |
verbose=True,
|
255 |
tools=[ScrapeWebsiteTool()],
|
256 |
-
|
257 |
# knowledge_sources=[pdf_source],
|
258 |
)
|
259 |
company_researcher = Agent(
|
@@ -266,7 +269,7 @@ company_researcher = Agent(
|
|
266 |
candidates for interviews. """,
|
267 |
tools=[SerperDevTool()],
|
268 |
verbose=True,
|
269 |
-
|
270 |
# knowledge_sources=[pdf_source],
|
271 |
|
272 |
)
|
@@ -279,7 +282,7 @@ resume_writer = Agent (
|
|
279 |
beautifully formatted, ATS-friendly documents that maintain professionalism
|
280 |
while showcasing candidate strengths effectively.""",
|
281 |
verbose=True,
|
282 |
-
|
283 |
)
|
284 |
report_generator = Agent(
|
285 |
role= "Career Report Generator and Markdown Specialist",
|
@@ -291,7 +294,7 @@ report_generator = Agent(
|
|
291 |
into clear, actionable insights with proper markdown formatting, emojis, and
|
292 |
visual elements that make information both appealing and easily digestible.""",
|
293 |
verbose=True,
|
294 |
-
|
295 |
)
|
296 |
|
297 |
analyze_job_task = Task(
|
|
|
15 |
from langchain_openai import ChatOpenAI
|
16 |
from typing import List, Dict, Optional
|
17 |
from pydantic import BaseModel, Field, confloat
|
18 |
+
from langchain_groq import ChatGroq # Import Groq LLM
|
19 |
|
20 |
class SkillScore(BaseModel):
|
21 |
skill_name: str = Field(description="Name of the skill being scored")
|
|
|
232 |
interview_questions: List[str] = Field(
|
233 |
description="Strategic questions to ask during the interview"
|
234 |
)
|
235 |
+
llm = ChatGroq(model="groq/llama3-70b-8192", groq_api_key=groq_api_key)
|
236 |
+
|
237 |
resume_analyzer = Agent(
|
238 |
role= "Resume Optimization Expert",
|
239 |
goal= "Analyze resumes and provide structured optimization suggestions",
|
|
|
243 |
providing actionable suggestions for improvement. Your recommendations always
|
244 |
focus on both human readability and ATS compatibility.""",
|
245 |
verbose=True,
|
246 |
+
llm=llm,
|
247 |
# knowledge_sources=[pdf_source],
|
248 |
)
|
249 |
job_analyzer = Agent(
|
|
|
256 |
and soft skills requirements, and can evaluate experience levels accurately.""",
|
257 |
verbose=True,
|
258 |
tools=[ScrapeWebsiteTool()],
|
259 |
+
llm=llm,
|
260 |
# knowledge_sources=[pdf_source],
|
261 |
)
|
262 |
company_researcher = Agent(
|
|
|
269 |
candidates for interviews. """,
|
270 |
tools=[SerperDevTool()],
|
271 |
verbose=True,
|
272 |
+
llm=llm,
|
273 |
# knowledge_sources=[pdf_source],
|
274 |
|
275 |
)
|
|
|
282 |
beautifully formatted, ATS-friendly documents that maintain professionalism
|
283 |
while showcasing candidate strengths effectively.""",
|
284 |
verbose=True,
|
285 |
+
llm=llm,
|
286 |
)
|
287 |
report_generator = Agent(
|
288 |
role= "Career Report Generator and Markdown Specialist",
|
|
|
294 |
into clear, actionable insights with proper markdown formatting, emojis, and
|
295 |
visual elements that make information both appealing and easily digestible.""",
|
296 |
verbose=True,
|
297 |
+
llm=llm,
|
298 |
)
|
299 |
|
300 |
analyze_job_task = Task(
|