mMonika commited on
Commit
c1448a7
·
verified ·
1 Parent(s): 1a38092

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +15 -6
app.py CHANGED
@@ -23,6 +23,13 @@ from pydantic import BaseModel, Field, confloat
23
  # model="deepseek-ai/DeepSeek-R1-Distill-Qwen-32B",
24
  # api_base="http://localhost:8000" # or DeepSeek API
25
  # )
 
 
 
 
 
 
 
26
  class SkillScore(BaseModel):
27
  skill_name: str = Field(description="Name of the skill being scored")
28
  required: bool = Field(description="Whether this skill is required or nice-to-have")
@@ -248,7 +255,7 @@ resume_analyzer = Agent(
248
  providing actionable suggestions for improvement. Your recommendations always
249
  focus on both human readability and ATS compatibility.""",
250
  verbose=True,
251
- # llm = llm,
252
  # knowledge_sources=[pdf_source],
253
  )
254
  job_analyzer = Agent(
@@ -261,7 +268,7 @@ job_analyzer = Agent(
261
  and soft skills requirements, and can evaluate experience levels accurately.""",
262
  verbose=True,
263
  tools=[ScrapeWebsiteTool()],
264
- # llm = llm,
265
 
266
  # knowledge_sources=[pdf_source],
267
  )
@@ -275,7 +282,7 @@ company_researcher = Agent(
275
  candidates for interviews. """,
276
  tools=[SerperDevTool()],
277
  verbose=True,
278
- # llm = llm,
279
 
280
  # knowledge_sources=[pdf_source],
281
 
@@ -289,7 +296,7 @@ resume_writer = Agent (
289
  beautifully formatted, ATS-friendly documents that maintain professionalism
290
  while showcasing candidate strengths effectively.""",
291
  verbose=True,
292
- # llm = llm,
293
 
294
  )
295
  report_generator = Agent(
@@ -302,7 +309,7 @@ report_generator = Agent(
302
  into clear, actionable insights with proper markdown formatting, emojis, and
303
  visual elements that make information both appealing and easily digestible.""",
304
  verbose=True,
305
- # llm = llm,
306
 
307
  )
308
 
@@ -499,7 +506,9 @@ def run_crew(api_key: str, job_url: str, company_name: str, resume_pdf_path: str
499
  if not api_key:
500
  return "⚠️ Please provide a valid OpenAI API Key."
501
 
502
- os.environ["OPENAI_API_KEY"] = f"{api_key}" # Set API key securely
 
 
503
  # Load PDF as knowledge source
504
  # pdf_source = resume_pdf_path
505
  pdf_source = PDFKnowledgeSource(
 
23
  # model="deepseek-ai/DeepSeek-R1-Distill-Qwen-32B",
24
  # api_base="http://localhost:8000" # or DeepSeek API
25
  # )
26
+ from langchain_community.llms import HuggingFaceHub
27
+ #HuggingFaceH4/zephyr-7b-beta"
28
+ llm = HuggingFaceHub(
29
+ repo_id="mistralai/Mistral-7B-Instruct-v0.2",
30
+ task="text-generation",
31
+ )
32
+
33
  class SkillScore(BaseModel):
34
  skill_name: str = Field(description="Name of the skill being scored")
35
  required: bool = Field(description="Whether this skill is required or nice-to-have")
 
255
  providing actionable suggestions for improvement. Your recommendations always
256
  focus on both human readability and ATS compatibility.""",
257
  verbose=True,
258
+ llm = llm,
259
  # knowledge_sources=[pdf_source],
260
  )
261
  job_analyzer = Agent(
 
268
  and soft skills requirements, and can evaluate experience levels accurately.""",
269
  verbose=True,
270
  tools=[ScrapeWebsiteTool()],
271
+ llm = llm,
272
 
273
  # knowledge_sources=[pdf_source],
274
  )
 
282
  candidates for interviews. """,
283
  tools=[SerperDevTool()],
284
  verbose=True,
285
+ llm = llm,
286
 
287
  # knowledge_sources=[pdf_source],
288
 
 
296
  beautifully formatted, ATS-friendly documents that maintain professionalism
297
  while showcasing candidate strengths effectively.""",
298
  verbose=True,
299
+ llm = llm,
300
 
301
  )
302
  report_generator = Agent(
 
309
  into clear, actionable insights with proper markdown formatting, emojis, and
310
  visual elements that make information both appealing and easily digestible.""",
311
  verbose=True,
312
+ llm = llm,
313
 
314
  )
315
 
 
506
  if not api_key:
507
  return "⚠️ Please provide a valid OpenAI API Key."
508
 
509
+ os.environ["HUGGINGFACEHUB_API_TOKEN"] = f"{api_key}" # Set API key securely
510
+ # os.environ["HUGGINGFACEHUB_API_TOKEN"] = userdata.get('HF_TOKEN')
511
+
512
  # Load PDF as knowledge source
513
  # pdf_source = resume_pdf_path
514
  pdf_source = PDFKnowledgeSource(