Medical_bot / app.py
mMonika's picture
Update app.py
7f1ecff verified
raw
history blame
6.21 kB
import streamlit as st
import os
import base64
from dotenv import load_dotenv
from langchain_groq import ChatGroq
from langchain.chains import LLMMathChain, LLMChain
from langchain.prompts import PromptTemplate
from langchain_community.utilities import WikipediaAPIWrapper
from langchain.agents.agent_types import AgentType
from langchain.agents import Tool, initialize_agent
from langchain_community.callbacks.streamlit import StreamlitCallbackHandler
from groq import Groq
import open_clip
import torch
from PIL import Image
# Load environment variables
load_dotenv()
groq_api_key = os.getenv("GROQ_API_KEY")
if not groq_api_key:
st.error("Groq API Key not found in .env file")
st.stop()
# Configure Streamlit
st.set_page_config(page_title="Medical Bot", page_icon="πŸ‘¨β€πŸ”¬")
st.title("Medical Bot")
# Initialize LLM models
llm_text = ChatGroq(model="llama-3.3-70b-versatile", groq_api_key=groq_api_key)
llm_image = ChatGroq(model="llama-3.2-90b-vision-preview", groq_api_key=groq_api_key)
# Load BiomedCLIP model for image classification
model, preprocess_train, preprocess_val = open_clip.create_model_and_transforms('hf-hub:microsoft/BiomedCLIP-PubMedBERT_256-vit_base_patch16_224')
tokenizer = open_clip.get_tokenizer('hf-hub:microsoft/BiomedCLIP-PubMedBERT_256-vit_base_patch16_224')
def classify_image(image_path: str) -> str:
"""Classifies a medical image using BiomedCLIP."""
device = torch.device('cuda') if torch.cuda.is_available() else torch.device('cpu')
model.to(device).eval()
image = preprocess_val(Image.open(image_path)).unsqueeze(0).to(device)
labels = ["MRI scan", "X-ray", "histopathology", "CT scan", "ultrasound", "medical chart"]
texts = tokenizer([f"this is a photo of {l}" for l in labels], context_length=256).to(device)
with torch.no_grad():
image_features, text_features, logit_scale = model(image, texts)
logits = (logit_scale * image_features @ text_features.t()).detach().softmax(dim=-1)
sorted_indices = torch.argsort(logits, dim=-1, descending=True)
top_class = labels[sorted_indices[0][0].item()]
return f"The image is classified as {top_class}."
# Define tools
wikipedia_tool = Tool(name="Wikipedia", func=WikipediaAPIWrapper().run, description="A tool for searching information.")
math_chain = LLMMathChain.from_llm(llm=llm_text)
calculator = Tool(name="Calculator", func=math_chain.run, description="Solves mathematical problems.")
prompt_template = PromptTemplate(input_variables=["question"], template="""
You are a mathematical problem-solving assistant. Solve the question step by step.
Question: {question}
Answer:
""")
chain = LLMChain(llm=llm_text, prompt=prompt_template)
reasoning_tool = Tool(name="Reasoning Tool", func=chain.run, description="Answers logic-based questions.")
biomed_clip_tool = Tool(name="BiomedCLIP Image Classifier", func=classify_image, description="Classifies medical images.")
# Initialize agents
assistant_agent_text = initialize_agent(
tools=[wikipedia_tool, calculator, reasoning_tool],
llm=llm_text,
agent=AgentType.ZERO_SHOT_REACT_DESCRIPTION,
verbose=False,
handle_parsing_errors=True
)
assistant_agent_image = initialize_agent(
tools=[biomed_clip_tool],
llm=llm_image,
agent=AgentType.ZERO_SHOT_REACT_DESCRIPTION,
verbose=False,
handle_parsing_errors=True
)
# Streamlit session state for chat messages
if "messages" not in st.session_state:
st.session_state["messages"] = [{"role": "assistant", "content": "Welcome! How can I help you today?"}]
# Chat Interface
for msg in st.session_state.messages:
if msg["role"] == "user" and "image" in msg:
st.chat_message(msg["role"]).write(msg['content'])
st.image(msg["image"], caption='Uploaded Image', use_column_width=True)
else:
st.chat_message(msg["role"]).write(msg['content'])
st.sidebar.header("Navigation")
if st.sidebar.button("Text Question"):
st.session_state["section"] = "text"
if st.sidebar.button("Image Question"):
st.session_state["section"] = "image"
if "section" not in st.session_state:
st.session_state["section"] = "text"
def clean_response(response):
return response.split("```")[-1].strip() if "```" in response else response
if st.session_state["section"] == "text":
st.header("Text Question")
question = st.text_area("Your Question:")
if st.button("Get Answer"):
if question:
with st.spinner("Generating response..."):
st.session_state.messages.append({"role": "user", "content": question})
st.chat_message("user").write(question)
response = assistant_agent_text.run(question)
cleaned_response = clean_response(response)
st.session_state.messages.append({'role': 'assistant', "content": cleaned_response})
st.write('### Response:')
st.success(cleaned_response)
else:
st.warning("Please enter a question.")
elif st.session_state["section"] == "image":
st.header("Image Question")
question = st.text_area("Your Question:")
uploaded_file = st.file_uploader("Upload an image", type=["jpg", "jpeg", "png"])
if st.button("Get Answer"):
if question and uploaded_file:
with st.spinner("Generating response..."):
image_path = f"temp_{uploaded_file.name}"
with open(image_path, "wb") as f:
f.write(uploaded_file.read())
st.session_state.messages.append({"role": "user", "content": question, "image": image_path})
st.chat_message("user").write(question)
st.image(image_path, caption='Uploaded Image', use_column_width=True)
response = assistant_agent_image.run(image_path)
cleaned_response = clean_response(response)
st.session_state.messages.append({'role': 'assistant', "content": cleaned_response})
st.write('### Response:')
st.success(cleaned_response)
else:
st.warning("Please enter a question and upload an image.")