m7n commited on
Commit
38b3562
·
1 Parent(s): 8f4bb5c

Upload revolutions_exploration.py

Browse files
Files changed (1) hide show
  1. revolutions_exploration.py +631 -0
revolutions_exploration.py ADDED
@@ -0,0 +1,631 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # -*- coding: utf-8 -*-
2
+ """revolutions_exploration.ipynb
3
+
4
+ Automatically generated by Colaboratory.
5
+
6
+ Original file is located at
7
+ https://colab.research.google.com/drive/1omNn2hrbDL_s1qwCOr7ViaIjrRW61YDt
8
+ """
9
+
10
+ !pip install gradio
11
+
12
+ # Commented out IPython magic to ensure Python compatibility.
13
+ #
14
+ # %%capture
15
+ # import multiprocessing
16
+ #
17
+ # multiprocessing.cpu_count()
18
+ #
19
+ # !pip install cmocean
20
+ # !pip install git+https://github.com/MNoichl/mesa
21
+ #
22
+ # !pip install compress-pickle --quiet
23
+
24
+ import random
25
+ import pandas as pd
26
+ from mesa import Agent, Model
27
+ from mesa.space import MultiGrid
28
+ import networkx as nx
29
+ from mesa.time import RandomActivation
30
+ from mesa.datacollection import DataCollector
31
+ import numpy as np
32
+ import seaborn as sns
33
+ import matplotlib.pyplot as plt
34
+ import matplotlib as mpl
35
+
36
+ import cmocean
37
+
38
+ import tqdm
39
+
40
+ import scipy as sp
41
+
42
+ from compress_pickle import dump, load
43
+
44
+ from scipy.stats import beta
45
+
46
+ # Commented out IPython magic to ensure Python compatibility.
47
+ # %%capture
48
+ # !pip install git+https://github.com/MNoichl/opinionated.git#egg=opinionated
49
+ # import opinionated
50
+ # plt.style.use("opinionated_rc")
51
+
52
+ experiences = {
53
+ 'dissident_experiences': [1,0,0],
54
+ 'supporter_experiences': [1,1,1],
55
+ }
56
+
57
+ def apply_half_life_decay(data_list, half_life, decay_factors=None):
58
+ steps = len(data_list)
59
+
60
+ # Check if decay_factors are provided and are of the correct length
61
+ if decay_factors is None or len(decay_factors) < steps:
62
+ decay_factors = [0.5 ** (i / half_life) for i in range(steps)]
63
+ decayed_list = [data_list[i] * decay_factors[steps - 1 - i] for i in range(steps)]
64
+
65
+
66
+ return decayed_list
67
+
68
+
69
+
70
+ half_life=20
71
+ decay_factors = [0.5 ** (i / half_life) for i in range(200)]
72
+
73
+ def get_beta_mean_from_experience_dict(experiences, half_life=20,decay_factors=None): #note: precomputed decay supersedes halflife!
74
+ eta = 1e-10
75
+ return beta.mean(sum(apply_half_life_decay(experiences['dissident_experiences'], half_life,decay_factors))+eta,
76
+ sum(apply_half_life_decay(experiences['supporter_experiences'], half_life,decay_factors))+eta)
77
+
78
+
79
+ def get_beta_sample_from_experience_dict(experiences, half_life=20,decay_factors=None):
80
+ eta = 1e-10
81
+
82
+ # print(sum(apply_half_life_decay(experiences['dissident_experiences'], half_life)))
83
+ # print(sum(apply_half_life_decay(experiences['supporter_experiences'], half_life)))
84
+ return beta.rvs(sum(apply_half_life_decay(experiences['dissident_experiences'], half_life,decay_factors))+eta,
85
+ sum(apply_half_life_decay(experiences['supporter_experiences'], half_life,decay_factors))+eta, size=1)[0]
86
+
87
+
88
+ print(get_beta_mean_from_experience_dict(experiences,half_life,decay_factors))
89
+ print(get_beta_sample_from_experience_dict(experiences,half_life))
90
+
91
+ #@title Load network functionality
92
+
93
+ def generate_community_points(num_communities, total_nodes, powerlaw_exponent=2.0, sigma=0.05, plot=False):
94
+ """
95
+ This function generates points in 2D space, where points are grouped into communities.
96
+ Each community is represented by a Gaussian distribution.
97
+
98
+ Args:
99
+ num_communities (int): Number of communities (gaussian distributions).
100
+ total_nodes (int): Total number of points to be generated.
101
+ powerlaw_exponent (float): The power law exponent for the powerlaw sequence.
102
+ sigma (float): The standard deviation for the gaussian distributions.
103
+ plot (bool): If True, the function plots the generated points.
104
+
105
+ Returns:
106
+ numpy.ndarray: An array of generated points.
107
+ """
108
+
109
+ # Sample from a powerlaw distribution
110
+ sequence = nx.utils.powerlaw_sequence(num_communities, powerlaw_exponent)
111
+
112
+ # Normalize sequence to represent probabilities
113
+ probabilities = sequence / np.sum(sequence)
114
+
115
+ # Assign nodes to communities based on probabilities
116
+ community_assignments = np.random.choice(num_communities, size=total_nodes, p=probabilities)
117
+
118
+ # Calculate community_sizes from community_assignments
119
+ community_sizes = np.bincount(community_assignments)
120
+ # Ensure community_sizes has length equal to num_communities
121
+ if len(community_sizes) < num_communities:
122
+ community_sizes = np.pad(community_sizes, (0, num_communities - len(community_sizes)), 'constant')
123
+
124
+ points = []
125
+ community_centers = []
126
+
127
+ # For each community
128
+ for i in range(num_communities):
129
+ # Create a random center for this community
130
+ center = np.random.rand(2)
131
+ community_centers.append(center)
132
+
133
+ # Sample from Gaussian distributions with the center and sigma
134
+ community_points = np.random.normal(center, sigma, (community_sizes[i], 2))
135
+
136
+ points.append(community_points)
137
+
138
+ points = np.concatenate(points)
139
+
140
+ # Optional plotting
141
+ if plot:
142
+ plt.figure(figsize=(8,8))
143
+ plt.scatter(points[:, 0], points[:, 1], alpha=0.5)
144
+ # for center in community_centers:
145
+ sns.kdeplot(x=points[:, 0], y=points[:, 1], levels=5, color="k", linewidths=1)
146
+ # plt.xlim(0, 1)
147
+ # plt.ylim(0, 1)
148
+ plt.show()
149
+
150
+ return points
151
+
152
+
153
+ def graph_from_coordinates(coords, radius):
154
+ """
155
+ This function creates a random geometric graph from an array of coordinates.
156
+
157
+ Args:
158
+ coords (numpy.ndarray): An array of coordinates.
159
+ radius (float): A radius of circles or spheres.
160
+
161
+ Returns:
162
+ networkx.Graph: The created graph.
163
+ """
164
+
165
+ # Create a KDTree for efficient query
166
+ kdtree = sp.spatial.cKDTree(coords)
167
+ edge_indexes = kdtree.query_pairs(radius)
168
+ g = nx.Graph()
169
+ g.add_nodes_from(list(range(len(coords))))
170
+ g.add_edges_from(edge_indexes)
171
+
172
+ return g
173
+
174
+
175
+ def plot_graph(graph, positions):
176
+ """
177
+ This function plots a graph with the given positions.
178
+
179
+ Args:
180
+ graph (networkx.Graph): The graph to be plotted.
181
+ positions (dict): A dictionary of positions for the nodes.
182
+ """
183
+
184
+ plt.figure(figsize=(8,8))
185
+ pos_dict = {i: positions[i] for i in range(len(positions))}
186
+ nx.draw_networkx_nodes(graph, pos_dict, node_size=30, node_color="#1a2340", alpha=0.7)
187
+ nx.draw_networkx_edges(graph, pos_dict, edge_color="grey", width=1, alpha=1)
188
+ plt.show()
189
+
190
+
191
+
192
+ def ensure_neighbors(graph):
193
+ """
194
+ Ensure that all nodes in a NetworkX graph have at least one neighbor.
195
+
196
+ Parameters:
197
+ graph (networkx.Graph): The NetworkX graph to check.
198
+
199
+ Returns:
200
+ networkx.Graph: The updated NetworkX graph where all nodes have at least one neighbor.
201
+ """
202
+ nodes = list(graph.nodes())
203
+ for node in nodes:
204
+ if len(list(graph.neighbors(node))) == 0:
205
+ # The node has no neighbors, so select another node to connect it with
206
+ other_node = random.choice(nodes)
207
+ while other_node == node: # Make sure we don't connect the node to itself
208
+ other_node = random.choice(nodes)
209
+ graph.add_edge(node, other_node)
210
+ return graph
211
+
212
+
213
+ def compute_homophily(G,attr_name='attr'):
214
+ same_attribute_edges = sum(G.nodes[n1][attr_name] == G.nodes[n2][attr_name] for n1, n2 in G.edges())
215
+ total_edges = G.number_of_edges()
216
+ return same_attribute_edges / total_edges if total_edges > 0 else 0
217
+
218
+ def assign_initial_attributes(G, ratio,attr_name='attr'):
219
+ nodes = list(G.nodes)
220
+ random.shuffle(nodes)
221
+ attr_boundary = int(ratio * len(nodes))
222
+ for i, node in enumerate(nodes):
223
+ G.nodes[node][attr_name] = 0 if i < attr_boundary else 1
224
+ return G
225
+
226
+ def distribute_attributes(G, target_homophily, seed=None, max_iter=10000, cooling_factor=0.9995,attr_name='attr'):
227
+ random.seed(seed)
228
+ current_homophily = compute_homophily(G,attr_name)
229
+ temp = 1.0
230
+
231
+ for i in range(max_iter):
232
+ # pick two random nodes with different attributes and swap their attributes
233
+ nodes = list(G.nodes)
234
+ random.shuffle(nodes)
235
+ for node1, node2 in zip(nodes[::2], nodes[1::2]):
236
+ if G.nodes[node1][attr_name] != G.nodes[node2][attr_name]:
237
+ G.nodes[node1][attr_name], G.nodes[node2][attr_name] = G.nodes[node2][attr_name], G.nodes[node1][attr_name]
238
+ break
239
+
240
+ new_homophily = compute_homophily(G,attr_name)
241
+ delta_homophily = new_homophily - current_homophily
242
+ dir_factor = np.sign(target_homophily - current_homophily)
243
+
244
+ # if the new homophily is closer to the target, or if the simulated annealing condition is met, accept the swap
245
+ if abs(new_homophily - target_homophily) < abs(current_homophily - target_homophily) or \
246
+ (delta_homophily / temp < 700 and random.random() < np.exp(dir_factor * delta_homophily / temp)):
247
+ current_homophily = new_homophily
248
+ else: # else, undo the swap
249
+ G.nodes[node1][attr_name], G.nodes[node2][attr_name] = G.nodes[node2][attr_name], G.nodes[node1][attr_name]
250
+
251
+ temp *= cooling_factor # cool down
252
+
253
+ return G
254
+
255
+
256
+ def reindex_graph_to_match_attributes(G1, G2, attr_name):
257
+ # Get a sorted list of nodes in G1 based on the attribute
258
+ G1_sorted_nodes = sorted(G1.nodes(data=True), key=lambda x: x[1][attr_name])
259
+
260
+ # Get a sorted list of nodes in G2 based on the attribute
261
+ G2_sorted_nodes = sorted(G2.nodes(data=True), key=lambda x: x[1][attr_name])
262
+
263
+ # Create a mapping from the G2 node IDs to the G1 node IDs
264
+ mapping = {G2_node[0]: G1_node[0] for G2_node, G1_node in zip(G2_sorted_nodes, G1_sorted_nodes)}
265
+
266
+ # Generate the new graph with the updated nodes
267
+ G2_updated = nx.relabel_nodes(G2, mapping)
268
+
269
+ return G2_updated
270
+
271
+ ##########################
272
+
273
+ def compute_mean(model):
274
+ agent_estimations = [agent.estimation for agent in model.schedule.agents]
275
+ return np.mean(agent_estimations)
276
+
277
+ def compute_median(model):
278
+ agent_estimations = [agent.estimation for agent in model.schedule.agents]
279
+ return np.median(agent_estimations)
280
+
281
+ def compute_std(model):
282
+ agent_estimations = [agent.estimation for agent in model.schedule.agents]
283
+ return np.std(agent_estimations)
284
+
285
+
286
+
287
+
288
+ class PoliticalAgent(Agent):
289
+ """An agent in the political model.
290
+
291
+ Attributes:
292
+ estimation (float): Agent's current expectation of political change.
293
+ dissident (bool): True if the agent supports a regime change, False otherwise.
294
+ networks_estimations (dict): A dictionary storing the estimations of the agent for each network.
295
+ """
296
+
297
+ def __init__(self, unique_id, model, dissident):
298
+ super().__init__(unique_id, model)
299
+ self.experiences = {
300
+ 'dissident_experiences': [1],
301
+ 'supporter_experiences': [1],
302
+ }
303
+ # self.estimation = estimation
304
+ self.estimations = []
305
+ self.estimation = .5 #hardcoded_mean, will change in first step if agent interacts.
306
+
307
+ self.experiments = []
308
+
309
+
310
+ self.dissident = dissident
311
+ # self.historical_estimations = []
312
+
313
+ def update_estimation(self, network_id):
314
+ """Update the agent's estimation for a given network."""
315
+ # Get the neighbors from the network
316
+ potential_partners = [self.model.schedule.agents[n] for n in self.model.networks[network_id]['network'].neighbors(self.unique_id)]
317
+
318
+
319
+
320
+
321
+ current_estimate =get_beta_mean_from_experience_dict(self.experiences,half_life=self.model.half_life,decay_factors=self.model.decay_factors)
322
+ self.estimations.append(current_estimate)
323
+ self.estimation =current_estimate
324
+ current_experiment = get_beta_sample_from_experience_dict(self.experiences,half_life=self.model.half_life, decay_factors=self.model.decay_factors)
325
+ self.experiments.append(current_experiment)
326
+
327
+ if potential_partners:
328
+ partner = random.choice(potential_partners)
329
+ if self.model.networks[network_id]['type'] == 'physical':
330
+ if current_experiment >= self.model.threshold:
331
+
332
+ if partner.dissident: # removed division by 100?
333
+ self.experiences['dissident_experiences'].append(1)
334
+ self.experiences['supporter_experiences'].append(0)
335
+ else:
336
+ self.experiences['dissident_experiences'].append(0)
337
+ self.experiences['supporter_experiences'].append(1)
338
+
339
+ partner.experiences['dissident_experiences'].append(1 * self.model.social_learning_factor)
340
+ partner.experiences['supporter_experiences'].append(0)
341
+
342
+ else:
343
+ partner.experiences['dissident_experiences'].append(0)
344
+ partner.experiences['supporter_experiences'].append(1 * self.model.social_learning_factor)
345
+
346
+
347
+ # else:
348
+ # pass
349
+ # Only one network for the moment!
350
+ elif self.model.networks[network_id]['type'] == 'social_media':
351
+ if partner.dissident: # removed division by 100?
352
+ self.experiences['dissident_experiences'].append(1 * self.model.social_media_factor)
353
+ self.experiences['supporter_experiences'].append(0)
354
+ else:
355
+ self.experiences['dissident_experiences'].append(0)
356
+ self.experiences['supporter_experiences'].append(1 * self.model.social_media_factor)
357
+
358
+ # self.networks_estimations[network_id] = self.estimation
359
+
360
+ def combine_estimations(self):
361
+ # """Combine the estimations from all networks using a bounded confidence model."""
362
+ values = [list(d.values())[0] for d in self.current_estimations]
363
+
364
+ if len(values) > 0:
365
+ # Filter the network estimations based on the bounded confidence range
366
+ within_range = [value for value in values if abs(self.estimation - value) <= self.model.bounded_confidence_range]
367
+
368
+ # If there are any estimations within the range, update the estimation
369
+ if len(within_range) > 0:
370
+ self.estimation = np.mean(within_range)
371
+
372
+
373
+
374
+
375
+ def step(self):
376
+ """Agent step function which updates the estimation for each network and then combines the estimations."""
377
+ if not hasattr(self, 'current_estimations'): # agents might already have this attribute because they were partnered up in the past.
378
+ self.current_estimations = []
379
+
380
+ for network_id in self.model.networks.keys():
381
+ self.update_estimation(network_id)
382
+
383
+ self.combine_estimations()
384
+ # self.historical_estimations.append(self.current_estimations)
385
+ del self.current_estimations
386
+
387
+
388
+ class PoliticalModel(Model):
389
+ """A model of a political system with multiple interacting agents.
390
+
391
+ Attributes:
392
+ networks (dict): A dictionary of networks with network IDs as keys and NetworkX Graph objects as values.
393
+ """
394
+
395
+ def __init__(self, n_agents, networks, share_regime_supporters,
396
+ # initial_expectation_of_change,
397
+ threshold,
398
+ social_learning_factor=1,social_media_factor=1, # one for equal learning, lower gets discounted
399
+ half_life=20, print_agents=False, print_frequency=30,
400
+ early_stopping_steps=20, early_stopping_range=0.01, agent_reporters=True,intervention_list=[],randomID=False):
401
+ self.num_agents = n_agents
402
+ self.threshold = threshold
403
+ self.social_learning_factor = social_learning_factor
404
+ self.social_media_factor = social_media_factor
405
+ self.print_agents_state = print_agents
406
+ self.half_life = half_life
407
+ self.intervention_list = intervention_list
408
+ self.model_id = randomID
409
+
410
+ self.print_frequency = print_frequency
411
+ self.early_stopping_steps = early_stopping_steps
412
+ self.early_stopping_range = early_stopping_range
413
+
414
+
415
+ self.mean_estimations = []
416
+ self.decay_factors = [0.5 ** (i / self.half_life) for i in range(500)] # Nte this should be larger than
417
+
418
+ # we could use this for early stopping!
419
+ self.running = True
420
+ self.share_regime_supporters = share_regime_supporters
421
+ self.schedule = RandomActivation(self)
422
+ self.networks = networks
423
+
424
+ # Assign dissident as argument to networks, compute homophilies, and match up the networks so that the same id leads to the same atrribute
425
+ for i, this_network in enumerate(self.networks):
426
+ self.networks[this_network]["network"] = assign_initial_attributes(self.networks[this_network]["network"],self.share_regime_supporters,attr_name='dissident')
427
+ if 'homophily' in self.networks[this_network]:
428
+ self.networks[this_network]["network"] = distribute_attributes(self.networks[this_network]["network"],
429
+ self.networks[this_network]['homophily'], max_iter=5000, cooling_factor=0.995,attr_name='dissident')
430
+ self.networks[this_network]['network_data_to_keep']['actual_homophily'] = compute_homophily(self.networks[this_network]["network"],attr_name='dissident')
431
+ if i>0:
432
+ self.networks[this_network]["network"] = reindex_graph_to_match_attributes(self.networks[next(iter(self.networks))]["network"], self.networks[this_network]["network"], 'dissident')
433
+
434
+ # print(self.networks)
435
+
436
+ for i in range(self.num_agents):
437
+ # estimation = random.normalvariate(initial_expectation_of_change, 0.2) We set a flat prior now
438
+
439
+ agent = PoliticalAgent(i, self, self.networks[next(iter(self.networks))]["network"].nodes(data=True)[i]['dissident'])
440
+ self.schedule.add(agent)
441
+ # Should we update to the real share here?!
442
+ ####################
443
+
444
+ # Keep the attributes in the model and define model reporters
445
+ model_reporters = {
446
+ "Mean": compute_mean,
447
+ "Median": compute_median,
448
+ "STD": compute_std
449
+ }
450
+
451
+ for this_network in self.networks:
452
+ if 'network_data_to_keep' in self.networks[this_network]:
453
+ for key, value in self.networks[this_network]['network_data_to_keep'].items():
454
+ attr_name = this_network + '_' + key
455
+ setattr(self, attr_name, value)
456
+
457
+ # Define a reporter function for this attribute
458
+ def reporter(model, attr_name=attr_name):
459
+ return getattr(model, attr_name)
460
+
461
+ # Add the reporter function to the dictionary
462
+ model_reporters[attr_name] = reporter
463
+
464
+ # Initialize DataCollector with the dynamic model reporters
465
+ if agent_reporters:
466
+ self.datacollector = DataCollector(
467
+ model_reporters=model_reporters,
468
+ agent_reporters={"Estimation": "estimation", "Dissident": "dissident"}#, "Historical Estimations": "historical_estimations"}
469
+ )
470
+ else:
471
+ self.datacollector = DataCollector(
472
+ model_reporters=model_reporters
473
+ )
474
+
475
+
476
+
477
+
478
+
479
+ def step(self):
480
+ """Model step function which activates the step function of each agent."""
481
+
482
+ self.datacollector.collect(self) # Collect data
483
+
484
+ # do interventions, if present:
485
+ for this_intervention in self.intervention_list:
486
+ # print(this_intervention)
487
+ if this_intervention['time'] == len(self.mean_estimations):
488
+
489
+ if this_intervention['type'] == 'threshold_adjustment':
490
+ self.threshold = max(0, min(1, self.threshold + this_intervention['strength']))
491
+
492
+ if this_intervention['type'] == 'share_adjustment':
493
+ target_supporter_share = max(0, min(1, self.share_regime_supporters + this_intervention['strength']))
494
+ agents = [self.schedule._agents[i] for i in self.schedule._agents]
495
+ current_supporters = sum(not agent.dissident for agent in agents)
496
+ total_agents = len(agents)
497
+ current_share = current_supporters / total_agents
498
+
499
+ # Calculate the number of agents to change
500
+ required_supporters = int(target_supporter_share * total_agents)
501
+ agents_to_change = abs(required_supporters - current_supporters)
502
+
503
+ if current_share < target_supporter_share:
504
+ # Not enough supporters, need to increase
505
+ dissidents = [agent for agent in agents if agent.dissident]
506
+ for agent in random.sample(dissidents, agents_to_change):
507
+ agent.dissident = False
508
+ elif current_share > target_supporter_share:
509
+ # Too many supporters, need to reduce
510
+ supporters = [agent for agent in agents if not agent.dissident]
511
+ for agent in random.sample(supporters, agents_to_change):
512
+ agent.dissident = True
513
+ # print(self.threshold)
514
+ if this_intervention['type'] == 'social_media_adjustment':
515
+ self.social_media_factor = max(0, min(1, self.social_media_factor + this_intervention['strength']))
516
+
517
+
518
+ self.schedule.step()
519
+ current_mean_estimation = compute_mean(self)
520
+ self.mean_estimations.append(current_mean_estimation)
521
+
522
+ # Implement the early stopping criteria
523
+ if len(self.mean_estimations) >= self.early_stopping_steps:
524
+ recent_means = self.mean_estimations[-self.early_stopping_steps:]
525
+ if max(recent_means) - min(recent_means) < self.early_stopping_range:
526
+ # if self.print_agents_state:
527
+ # print('Early stopping at: ', self.schedule.steps)
528
+ # self.print_agents()
529
+ self.running = False
530
+
531
+ # if self.print_agents_state and (self.schedule.steps % self.print_frequency == 0 or self.schedule.steps == 1):
532
+ # print(self.schedule.steps)
533
+ # self.print_agents()
534
+
535
+
536
+
537
+
538
+
539
+
540
+ def run_simulation(n_agents=300, share_regime_supporters=0.4, threshold=0.5, social_learning_factor=1, simulation_steps=400, half_life=20):
541
+ # Helper functions like graph_from_coordinates, ensure_neighbors should be defined outside this function
542
+
543
+ # Complete graph
544
+ G = nx.complete_graph(n_agents)
545
+
546
+ # Networks dictionary
547
+ networks = {
548
+ "physical": {"network": G, "type": "physical", "positions": nx.circular_layout(G)}#kamada_kawai
549
+ }
550
+
551
+ # Intervention list
552
+ intervention_list = [ ]
553
+
554
+ # Initialize the model
555
+ model = PoliticalModel(n_agents, networks, share_regime_supporters, threshold,
556
+ social_learning_factor, half_life=half_life, print_agents=False, print_frequency=50, agent_reporters=True, intervention_list=intervention_list)
557
+
558
+ # Run the model
559
+ for _ in tqdm.tqdm_notebook(range(simulation_steps)): # Run for specified number of steps
560
+ model.step()
561
+ return model
562
+
563
+ # Example usage
564
+
565
+ def run_and_plot_simulation(n_agents=300, share_regime_supporters=0.4, threshold=0.5, social_learning_factor=1, simulation_steps=40, half_life=20):
566
+ model =run_simulation(n_agents=n_agents, share_regime_supporters=share_regime_supporters, threshold=threshold, social_learning_factor=social_learning_factor, simulation_steps=simulation_steps, half_life=half_life)
567
+ # Get data and reset index
568
+ agent_df = model.datacollector.get_agent_vars_dataframe().reset_index()
569
+
570
+ # Pivot the dataframe
571
+ agent_df_pivot = agent_df.pivot(index='Step', columns='AgentID', values='Estimation')
572
+
573
+ # Create the plot
574
+ fig, ax = plt.subplots(figsize=(12, 8))
575
+ for column in agent_df_pivot.columns:
576
+ plt.plot(agent_df_pivot.index, agent_df_pivot[column], color='gray', alpha=0.1)
577
+
578
+ # Compute and plot the mean estimation
579
+ mean_estimation = agent_df_pivot.mean(axis=1)
580
+ plt.plot(mean_estimation.index, mean_estimation, color='black', linewidth=2)
581
+
582
+ # Set the plot title and labels
583
+ plt.title('Agent Estimation Over Time')
584
+ plt.xlabel('Time step')
585
+ plt.ylabel('Estimation')
586
+ return fig
587
+
588
+
589
+ # run_and_plot_simulation(n_agents=300, share_regime_supporters=0.4, threshold=0.5, social_learning_factor=1, simulation_steps=40, half_life=20)
590
+
591
+ import gradio as gr
592
+ import matplotlib.pyplot as plt
593
+
594
+
595
+ # Gradio interface
596
+ with gr.Blocks(theme=gr.themes.Monochrome()) as demo:
597
+ with gr.Column():
598
+ gr.Markdown("# Simulation Visualization Interface")
599
+ with gr.Row():
600
+ with gr.Column():
601
+
602
+
603
+ # Sliders for each parameter
604
+ n_agents_slider = gr.Slider(minimum=100, maximum=500, step=10, label="Number of Agents", value=150)
605
+ share_regime_slider = gr.Slider(minimum=0.0, maximum=1.0, step=0.01, label="Share of Regime Supporters", value=0.4)
606
+ threshold_slider = gr.Slider(minimum=0.0, maximum=1.0, step=0.01, label="Threshold", value=0.5)
607
+ social_learning_slider = gr.Slider(minimum=0.0, maximum=2.0, step=0.1, label="Social Learning Factor", value=1.0)
608
+ steps_slider = gr.Slider(minimum=10, maximum=100, step=5, label="Simulation Steps", value=40)
609
+ half_life_slider = gr.Slider(minimum=5, maximum=50, step=5, label="Half-Life", value=20)
610
+
611
+ with gr.Column():
612
+ # Button to trigger the simulation
613
+ button = gr.Button("Run Simulation")
614
+ plot_output = gr.Plot(label="Simulation Result")
615
+
616
+ # Function to call when button is clicked
617
+ def run_simulation_and_plot(*args):
618
+ fig = run_and_plot_simulation(*args)
619
+ return fig
620
+
621
+ # Setting up the button click event
622
+ button.click(
623
+ run_simulation_and_plot,
624
+ inputs=[n_agents_slider, share_regime_slider, threshold_slider, social_learning_slider, steps_slider, half_life_slider],
625
+ outputs=[plot_output]
626
+ )
627
+
628
+ # Launch the interface
629
+ if __name__ == "__main__":
630
+ demo.launch(debug=True)
631
+