ai_class_app / app.py
mitch
Added app.py
112cf0c unverified
raw
history blame
24.6 kB
import gradio as gr
from llama_cpp import Llama
from qdrant_client import QdrantClient
from datasets import load_dataset
from sentence_transformers import SentenceTransformer
import cv2
import os
import tempfile
import uuid
import re
import subprocess
import time
print("Initializing LLM...")
# Ensure the model file exists or download will be attempted
try:
llm = Llama.from_pretrained(
repo_id="m1tch/gemma-finetune-ai_class_gguf",
filename="gemma-3_ai_class.Q8_0.gguf",
n_gpu_layers=-1, # Use -1 to offload all possible layers to GPU
n_ctx=2048,
verbose=False # Set to True for more detailed llama.cpp output
)
print("LLM initialized successfully.")
except Exception as e:
print(f"Error initializing LLM: {e}")
# Optionally raise the exception or handle it gracefully
raise
print("Connecting to Qdrant...")
try:
qdrant_client = QdrantClient(
url="https://2c18d413-cbb5-441c-b060-4c8c2302dcde.us-east4-0.gcp.cloud.qdrant.io:6333/",
# It's generally safer to load API keys from environment variables or a config file
api_key=os.environ.get("QDRANT_API_KEY", "eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJhY2Nlc3MiOiJtIn0.b86GHyWqFDw63UkrR98LlY2GU4XdVyOAlv_qpm9KKTw"),
timeout=60 # Increase timeout if experiencing connection issues
)
# Test connection
qdrant_client.get_collections()
print("Qdrant connection successful.")
except Exception as e:
print(f"Error connecting to Qdrant: {e}")
raise
print("Loading dataset stream...")
try:
# Load video dataset - ensure you have internet access
# streaming=True avoids downloading the entire dataset at once
dataset = load_dataset("aegean-ai/ai-lectures-spring-24", split="train", streaming=True)
# Peek at the first item to ensure the stream works
print(f"Dataset loaded. First item example: {next(iter(dataset))['__key__']}")
except Exception as e:
print(f"Error loading dataset: {e}")
raise
try:
embedding_model = SentenceTransformer('all-MiniLM-L6-v2')
print("Sentence Transformer model loaded.")
except Exception as e:
print(f"Error loading Sentence Transformer model: {e}")
raise
def rag_query(client, collection_name, query_text, top_k=5, filter_condition=None):
"""
Test RAG by querying the vector database with text. Returns a dictionary with search results and metadata.
Uses the pre-loaded embedding_model.
"""
try:
# Use the pre-loaded model
query_vector = embedding_model.encode(query_text).tolist()
search_params = {
"collection_name": collection_name,
"query_vector": query_vector,
"limit": top_k,
"with_payload": True,
"with_vectors": False
}
if filter_condition:
search_params["filter"] = filter_condition
search_results = client.search(**search_params)
formatted_results = []
for idx, result in enumerate(search_results):
formatted_results.append({
"rank": idx + 1,
"score": result.score,
"video_id": result.payload.get("video_id"),
"timestamp": result.payload.get("timestamp"),
"subtitle": result.payload.get("subtitle"),
"frame_number": result.payload.get("frame_number")
})
return {
"query": query_text,
"results": formatted_results,
"avg_score": sum(r.score for r in search_results) / len(search_results) if search_results else 0
}
except Exception as e:
print(f"Error during RAG query: {e}")
# Return a structure indicating error, but don't crash the app
return {"error": str(e), "query": query_text, "results": []}
def extract_video_segment(video_id, start_time, duration, dataset):
"""
Generator function that extracts and yields a single video segment file path.
Modified to return a single path suitable for Gradio.
"""
target_id = str(video_id) # Ensure it's a string
target_key = f"videos/{target_id}/{target_id}"
start_time = float(start_time) # Ensure it's a float
duration = float(duration)
unique_id = str(uuid.uuid4())
temp_dir = os.path.join(tempfile.gettempdir(), f"gradio_video_{unique_id}")
os.makedirs(temp_dir, exist_ok=True)
temp_video_path = os.path.join(temp_dir, f"{target_id}_full_{unique_id}.mp4")
output_path_opencv = os.path.join(temp_dir, f"output_opencv_{unique_id}.mp4")
output_path_ffmpeg = os.path.join(temp_dir, f"output_ffmpeg_{unique_id}.mp4")
print(f"Attempting to extract segment for video_id={target_id}, start={start_time}, duration={duration}")
print(f"Looking for dataset key: {target_key}")
print(f"Temporary directory: {temp_dir}")
try:
# --- Find and save the full video ---
found = False
retries = 3 # Retry finding the video in the stream
dataset_iterator = iter(dataset) # Get an iterator
for _ in range(retries * 5000): # Limit search iterations to avoid infinite loops in case of issues
try:
sample = next(dataset_iterator)
if '__key__' in sample and sample['__key__'] == target_key:
found = True
print(f"Found video key {target_key}. Saving to {temp_video_path}...")
with open(temp_video_path, 'wb') as f:
f.write(sample['mp4'])
print(f"Video saved successfully ({os.path.getsize(temp_video_path)} bytes).")
break
except StopIteration:
print("Reached end of dataset stream without finding the video.")
break
except Exception as e:
print(f"Error iterating dataset: {e}")
time.sleep(1) # Wait a bit before retrying iteration
if not found:
print(f"Could not find video with ID {target_id} (key: {target_key}) in the dataset stream after {_ + 1} attempts.")
# Attempt to reset the stream IF the dataset library supports it easily (often not simple with streaming)
# For now, we just report failure for this request.
# yield None # Don't yield here, let the outer function handle no video path
return None # Return None instead of yielding
# --- Process the saved video ---
if not os.path.exists(temp_video_path) or os.path.getsize(temp_video_path) == 0:
print(f"Temporary video file {temp_video_path} is missing or empty.")
return None
cap = cv2.VideoCapture(temp_video_path)
if not cap.isOpened():
print(f"Error opening video file with OpenCV: {temp_video_path}")
return None
fps = cap.get(cv2.CAP_PROP_FPS)
# Handle cases where FPS might be 0 or invalid
if fps <= 0:
print(f"Warning: Invalid FPS ({fps}) detected for {temp_video_path}. Assuming 30 FPS.")
fps = 30 # Assume a default FPS
width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
total_vid_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
vid_duration = total_vid_frames / fps if fps > 0 else 0
print(f"Video properties: {width}x{height} @ {fps:.2f}fps, Total Duration: {vid_duration:.2f}s")
start_frame = int(start_time * fps)
end_frame = int((start_time + duration) * fps)
# Clamp frame numbers to valid range
start_frame = max(0, start_frame)
end_frame = min(total_vid_frames, end_frame)
if start_frame >= total_vid_frames or start_frame >= end_frame:
print(f"Calculated start frame ({start_frame}) is beyond video length ({total_vid_frames}) or segment is invalid.")
cap.release()
return None
cap.set(cv2.CAP_PROP_POS_FRAMES, start_frame)
frames_to_write = end_frame - start_frame
print(f"Extracting frames from {start_frame} to {end_frame} ({frames_to_write} frames)")
# --- Try OpenCV writing first (fallback) ---
fourcc_opencv = cv2.VideoWriter_fourcc(*'mp4v') # mp4v is often more compatible than avc1 with base OpenCV
out_opencv = cv2.VideoWriter(output_path_opencv, fourcc_opencv, fps, (width, height))
if not out_opencv.isOpened():
print("Error opening OpenCV VideoWriter with mp4v.")
cap.release()
return None
frames_written_opencv = 0
while frames_written_opencv < frames_to_write:
ret, frame = cap.read()
if not ret:
print("Warning: Ran out of frames before reaching target end frame.")
break
out_opencv.write(frame)
frames_written_opencv += 1
out_opencv.release()
print(f"OpenCV finished writing {frames_written_opencv} frames to {output_path_opencv}")
# --- Release OpenCV capture ---
cap.release() # Release the capture object before trying ffmpeg
# --- Try converting/extracting with FFmpeg (preferred for compatibility) ---
final_output_path = None
try:
# Use ffmpeg to directly cut the segment and ensure web-compatible encoding
# This is generally more reliable than OpenCV for specific timings and codecs
cmd = [
'ffmpeg',
'-ss', str(start_time), # Start time
'-i', temp_video_path, # Input file (original downloaded)
'-t', str(duration), # Duration of the segment
'-c:v', 'libx264', # Video codec H.264
'-profile:v', 'baseline', # Baseline profile for broad compatibility
'-level', '3.0', # Level 3.0
'-preset', 'fast', # Encoding speed/quality trade-off
'-pix_fmt', 'yuv420p', # Pixel format for compatibility
'-movflags', '+faststart', # Optimize for web streaming
'-c:a', 'aac', # Audio codec AAC (common)
'-b:a', '128k', # Audio bitrate
'-y', # Overwrite output file if exists
output_path_ffmpeg
]
print(f"Running FFmpeg command: {' '.join(cmd)}")
result = subprocess.run(cmd, capture_output=True, text=True, timeout=120) # Add timeout
if result.returncode == 0 and os.path.exists(output_path_ffmpeg) and os.path.getsize(output_path_ffmpeg) > 0:
print(f"FFmpeg processing successful. Output: {output_path_ffmpeg}")
final_output_path = output_path_ffmpeg
else:
print(f"FFmpeg error (Return Code: {result.returncode}):")
print(f"FFmpeg stdout:\n{result.stdout}")
print(f"FFmpeg stderr:\n{result.stderr}")
print("Falling back to OpenCV output.")
# Check if OpenCV output is valid before using it
if os.path.exists(output_path_opencv) and os.path.getsize(output_path_opencv) > 0:
final_output_path = output_path_opencv
else:
print("OpenCV output is also invalid or empty.")
final_output_path = None # Neither worked
except subprocess.TimeoutExpired:
print("FFmpeg command timed out.")
print("Falling back to OpenCV output.")
if os.path.exists(output_path_opencv) and os.path.getsize(output_path_opencv) > 0:
final_output_path = output_path_opencv
else:
print("OpenCV output is also invalid or empty.")
final_output_path = None
except FileNotFoundError:
print("Error: ffmpeg command not found. Make sure FFmpeg is installed and in your system's PATH.")
print("Falling back to OpenCV output.")
if os.path.exists(output_path_opencv) and os.path.getsize(output_path_opencv) > 0:
final_output_path = output_path_opencv
else:
print("OpenCV output is also invalid or empty.")
final_output_path = None
except Exception as e:
print(f"An unexpected error occurred during FFmpeg processing: {e}")
print("Falling back to OpenCV output.")
if os.path.exists(output_path_opencv) and os.path.getsize(output_path_opencv) > 0:
final_output_path = output_path_opencv
else:
print("OpenCV output is also invalid or empty.")
final_output_path = None
# Clean up the large temporary full video file *after* processing
if os.path.exists(temp_video_path):
try:
os.remove(temp_video_path)
print(f"Cleaned up temporary full video: {temp_video_path}")
except Exception as e:
print(f"Warning: Could not remove temporary file {temp_video_path}: {e}")
# If FFmpeg failed, potentially clean up its failed output
if final_output_path != output_path_ffmpeg and os.path.exists(output_path_ffmpeg):
try:
os.remove(output_path_ffmpeg)
except Exception as e:
print(f"Warning: Could not remove failed ffmpeg output {output_path_ffmpeg}: {e}")
# Return the path of the successfully created segment
print(f"Returning video segment path: {final_output_path}")
return final_output_path # Return the path string directly
except Exception as e:
print(f"Error processing video segment for {video_id}: {e}")
import traceback
traceback.print_exc() # Print detailed traceback for debugging
# Clean up potentially partially created files in case of error
if 'cap' in locals() and cap.isOpened(): cap.release()
if 'out_opencv' in locals() and out_opencv.isOpened(): out_opencv.release()
# Attempt cleanup of temp files on error
if os.path.exists(temp_video_path): os.remove(temp_video_path)
if os.path.exists(output_path_opencv): os.remove(output_path_opencv)
if os.path.exists(output_path_ffmpeg): os.remove(output_path_ffmpeg)
return None # Return None on error
QDRANT_COLLECTION_NAME = "video_frames"
VIDEO_SEGMENT_DURATION = 30 # Extract 30 seconds around the timestamp
def parse_llm_output(text):
"""
Parses the LLM's structured output using a mix of regex for simple
fields (video_id, timestamp) and string manipulation for reasoning
as a workaround for regex matching issues.
"""
# Optional: Print repr for debugging if needed
# print(f"\nDEBUG: Raw text input to parse_llm_output:\n{repr(text)}\n")
data = {}
# --- Parse video_id and timestamp with regex (as they worked) ---
simple_patterns = {
'video_id': r"\{Best Result:\s*\[?([^\]\}]+)\]?\s*\}",
'timestamp': r"\{Timestamp:\s*\[?([^\]\}]+)\]?\s*\}",
}
for key, pattern in simple_patterns.items():
match = re.search(pattern, text, re.IGNORECASE)
if match:
value = match.group(1).strip()
# Strip potential quotes (single, double, curly)
value = value.strip('\'"“”')
data[key] = value
else:
print(f"Warning: Could not parse '{key}' using regex pattern: {pattern}")
data[key] = None
# --- Parse reasoning using string manipulation ---
reasoning_value = None
try:
# Define markers, converting search key to lowercase for case-insensitive find
key_marker_lower = "{reasoning:"
# Find the start index based on the lowercase marker
start_index = text.lower().find(key_marker_lower)
if start_index != -1:
# Find the closing brace '}' starting the search *after* the marker
# Add length of the marker to ensure we find the correct closing brace
search_start_for_brace = start_index + len(key_marker_lower)
end_index = text.find('}', search_start_for_brace)
if end_index != -1:
# Extract content using original casing from text, between actual marker end and brace
# Calculate the actual end of the marker in the original string
actual_marker_end = start_index + len(key_marker_lower)
value = text[actual_marker_end : end_index]
# Perform cleanup on the extracted value
value = value.strip() # Strip outer whitespace first
if value.startswith('[') and value.endswith(']'):
value = value[1:-1] # Slice off brackets
value = value.strip('\'"“”') # Strip quotes
value = value.strip() # Strip whitespace again
reasoning_value = value
else:
print("Warning: Found '{reasoning:' marker but no closing '}' found afterwards.")
else:
print("Warning: Marker '{reasoning:' not found in text.")
except Exception as e:
# Catch potential errors during slicing or finding
print(f"Error during string manipulation parsing for reasoning: {e}")
data['reasoning'] = reasoning_value # Assign found value or None
# --- Validation ---
if data.get('timestamp'):
try:
float(data['timestamp'])
except ValueError:
print(f"Warning: Parsed timestamp '{data['timestamp']}' is not a valid number.")
print(f"Parsed LLM output (Using String Manipulation for Reasoning): {data}")
return data
def process_query_and_get_video(query_text):
"""
Orchestrates RAG, LLM query, parsing, and video extraction.
"""
print(f"\n--- Processing query: '{query_text}' ---")
# 1. RAG Query
print("Step 1: Performing RAG query...")
rag_results = rag_query(qdrant_client, QDRANT_COLLECTION_NAME, query_text)
if "error" in rag_results or not rag_results.get("results"):
error_msg = rag_results.get('error', 'No relevant segments found by RAG.')
print(f"RAG Error/No Results: {error_msg}")
return f"Error during RAG search: {error_msg}", None # Return error message and no video
print(f"RAG query successful. Found {len(rag_results['results'])} results.")
# print(f"Top RAG result: {rag_results['results'][0]}") # For debugging
# 2. Format LLM Prompt
print("Step 2: Formatting prompt for LLM...")
# Use the exact prompt structure from your example
prompt = f"""You are tasked with selecting the most relevant information from a set of video subtitle segments to answer a query.
QUERY (also seen below): "{query_text}"
For each result provided, evaluate how well it directly addresses the definition or explanation related to the query. Pay attention to:
1. Clarity of explanation
2. Relevance to the query
3. Completeness of information
From the provided results, select the SINGLE BEST match that most directly answers the query.
Format your response STRICTLY as follows, with each field on a new line:
{{Best Result: [video_id]}}
{{Timestamp: [timestamp]}}
{{Content: [subtitle text]}}
{{Reasoning: [Brief explanation of why this result best answers the query]}}
{rag_results}""" # Pass the whole RAG results dictionary as string representation
# 3. Call LLM
print("Step 3: Querying the LLM...")
try:
output = llm.create_chat_completion(
messages=[
{"role": "system", "content": "You are a helpful assistant designed to select the best video segment based on relevance to a query, following a specific output format."},
{"role": "user", "content": prompt},
],
temperature=0.1, # Lower temperature for more deterministic selection
max_tokens=250 # Adjust as needed, ensure enough space for reasoning
)
llm_response_text = output['choices'][0]['message']['content']
print(f"LLM Response:\n{llm_response_text}")
except Exception as e:
print(f"Error during LLM call: {e}")
return f"Error calling LLM: {e}", None
# 4. Parse LLM Response
print("Step 4: Parsing LLM response...")
parsed_data = parse_llm_output(llm_response_text)
video_id = parsed_data.get('video_id')
timestamp_str = parsed_data.get('timestamp')
reasoning = parsed_data.get('reasoning')
if not video_id or not timestamp_str:
print("Error: Could not parse required video_id or timestamp from LLM response.")
fallback_reasoning = reasoning if reasoning else "Could not determine the best segment."
# Include raw LLM response in the error message for debugging
error_msg = f"Failed to parse LLM response. LLM said:\n---\n{llm_response_text}\n---\nReasoning (if found): {fallback_reasoning}"
return error_msg, None
try:
timestamp = float(timestamp_str)
# Adjust timestamp slightly - start a bit earlier if possible
start_time = max(0.0, timestamp - (VIDEO_SEGMENT_DURATION / 4))
except ValueError:
print(f"Error: Could not convert parsed timestamp '{timestamp_str}' to float.")
error_msg = f"Invalid timestamp format from LLM ('{timestamp_str}'). LLM reasoning (if found): {reasoning}"
return error_msg, None
final_reasoning = reasoning if reasoning else "No reasoning provided by LLM."
# 5. Extract Video Segment
print(f"Step 5: Extracting video segment (ID: {video_id}, Start: {start_time:.2f}s, Duration: {VIDEO_SEGMENT_DURATION}s)...")
# Reset the dataset iterator for each new request IF POSSIBLE.
# NOTE: Resetting a Hugging Face streaming dataset is tricky.
# It might re-start from the beginning. For heavy use, downloading might be better.
# Or, implement caching of downloaded videos if the same ones are accessed often.
# For this example, we'll rely on the stream potentially starting over or finding the item.
global dataset # Make sure we use the global dataset object
# dataset = iter(load_dataset("aegean-ai/ai-lectures-spring-24", split="train", streaming=True)) # Attempt re-init (might be slow)
video_path = extract_video_segment(video_id, start_time, VIDEO_SEGMENT_DURATION, dataset)
if video_path and os.path.exists(video_path):
print(f"Video segment extracted successfully: {video_path}")
return final_reasoning, video_path
else:
print("Failed to extract video segment.")
error_msg = f"{final_reasoning}\n\n(However, failed to extract the corresponding video segment for ID {video_id} at timestamp {timestamp_str}.)"
return error_msg, None
with gr.Blocks() as iface:
gr.Markdown(
"""
# AI Lecture Video Q&A
Ask a question about the AI lectures. The system will find relevant segments using RAG,
ask a fine-tuned LLM to select the best one, and display the corresponding video clip.
"""
)
with gr.Row():
query_input = gr.Textbox(label="Your Question", placeholder="e.g., What is a convolutional neural network?")
submit_button = gr.Button("Ask & Find Video")
with gr.Row():
reasoning_output = gr.Markdown(label="LLM Reasoning")
with gr.Row():
video_output = gr.Video(label="Relevant Video Segment")
submit_button.click(
fn=process_query_and_get_video,
inputs=query_input,
outputs=[reasoning_output, video_output]
)
gr.Examples(
examples=[
"What are activation functions?",
"Explain backpropagation.",
"What is transfer learning?",
"Show me an example of data augmentation.",
"What is the difference between classification and regression?",
],
inputs=query_input,
outputs=[reasoning_output, video_output], # Outputs needed for examples too
fn=process_query_and_get_video, # The function to run for examples
cache_examples=False, # Disable caching if streaming/LLM state changes
)
# --- Launch the Interface ---
# share=True creates a public link, requires internet. Set to False for local use.
# debug=True provides more detailed error outputs in the console.
print("Launching Gradio interface...")
iface.launch(debug=True, share=False) # Run locally in the notebook