Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,64 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from langchain.llms import CTransformers
|
2 |
+
from langchain.chains import LLMChain
|
3 |
+
from langchain.prompts import PromptTemplate
|
4 |
+
import os
|
5 |
+
import io
|
6 |
+
import gradio as gr
|
7 |
+
import time
|
8 |
+
|
9 |
+
custom_prompt_template = """
|
10 |
+
You are an AI coding assistant and your task is to solve coding problems and
|
11 |
+
return code snippets based on user's query. Below is the user's query.
|
12 |
+
Query: {query}
|
13 |
+
You just return the helpful code and related datails
|
14 |
+
Helpful code and related details:
|
15 |
+
"""
|
16 |
+
|
17 |
+
def set_custom_prompt():
|
18 |
+
prompt = PromptTemplate(
|
19 |
+
template = custom_prompt_template,
|
20 |
+
input_variables = ['query']
|
21 |
+
)
|
22 |
+
return prompt
|
23 |
+
|
24 |
+
def load_model():
|
25 |
+
llm = CTransformers(
|
26 |
+
model = 'codellama-7b.Q4_K_M.gguf',
|
27 |
+
model_type = 'llama',
|
28 |
+
max_new_tokens = 1096,
|
29 |
+
temperature = 0.2,
|
30 |
+
repetition_penalty = 1.13,
|
31 |
+
gpu_layers = 2
|
32 |
+
)
|
33 |
+
return llm
|
34 |
+
|
35 |
+
def chain_pipeline():
|
36 |
+
llm = load_model()
|
37 |
+
qa_prompt = set_custom_prompt()
|
38 |
+
qa_chain = LLMChain(
|
39 |
+
prompt = qa_prompt,
|
40 |
+
llm=llm
|
41 |
+
)
|
42 |
+
return qa_chain
|
43 |
+
|
44 |
+
llmcahin = chain_pipeline()
|
45 |
+
|
46 |
+
def bot(query):
|
47 |
+
llm_response = llmcahin.run({"query":query})
|
48 |
+
return llm_response
|
49 |
+
|
50 |
+
with gr.Blocks(title="code llama 7b") as demo:
|
51 |
+
gr.Markdown("# Code llama")
|
52 |
+
chatbot = gr.Chatbot([],elem_id="chatbot",height=700)
|
53 |
+
msg = gr.Textbox()
|
54 |
+
clear = gr.ClearButton([msg,chatbot])
|
55 |
+
|
56 |
+
def respond(message, chat_history):
|
57 |
+
bot_message = bot(message)
|
58 |
+
chat_history.append((message, bot_message))
|
59 |
+
time.sleep(2)
|
60 |
+
return "",chat_history
|
61 |
+
|
62 |
+
msg.submit(respond,[msg, chatbot],[msg, chatbot])
|
63 |
+
|
64 |
+
demo.launch(share=True)
|