lynxkite / examples /Cheminformatics /cheminfo_tools.py
abhik1368's picture
New tools and filters for cheminfo
4cf35ad unverified
import os
import pickle
from lynxkite.core.ops import op
from matplotlib import pyplot as plt
import pandas as pd
from rdkit.Chem.Draw import rdMolDraw2D
from PIL import Image
from rdkit import Chem
from rdkit.Chem import Descriptors
from rdkit.Chem import Crippen, Lipinski
from rdkit import DataStructs
import math
import io
from rdkit.Chem import AllChem
from sklearn.ensemble import RandomForestRegressor
from sklearn.metrics import r2_score, mean_absolute_error, mean_squared_error
from sklearn.model_selection import train_test_split
import numpy as np
from rdkit.Chem import MACCSkeys
@op("LynxKite Graph Analytics", "View mol filter", view="matplotlib", slow=True)
def mol_filter(
bundle,
*,
table_name: str,
SMILES_Column: str,
mols_per_row: int,
filter_smarts: str = None,
filter_smiles: str = None,
highlight: bool = True,
):
"""
Draws a grid of molecules in square boxes, with optional filtering and substructure highlighting.
Parameters:
- bundle: data bundle containing a DataFrame in bundle.dfs[table_name]
- table_name: name of the table in bundle.dfs
- column_name: column containing SMILES strings
- mols_per_row: number of molecules per row in the grid
- filter_smarts: SMARTS pattern to filter and highlight
- filter_smiles: SMILES substructure to filter and highlight (if filter_smarts is None)
- highlight: whether to highlight matching substructures
"""
# get DataFrame
df = bundle.dfs[table_name].copy()
df["mol"] = df[SMILES_Column].apply(Chem.MolFromSmiles)
df = df[df["mol"].notnull()].reset_index(drop=True)
# compile substructure query if provided
query = None
if filter_smarts:
query = Chem.MolFromSmarts(filter_smarts)
elif filter_smiles:
query = Chem.MolFromSmiles(filter_smiles)
# compute properties and legends
df["MW"] = df["mol"].apply(Descriptors.MolWt)
df["logP"] = df["mol"].apply(Crippen.MolLogP)
df["HBD"] = df["mol"].apply(Lipinski.NumHDonors)
df["HBA"] = df["mol"].apply(Lipinski.NumHAcceptors)
legends = []
for _, row in df.iterrows():
mol = row["mol"]
# filter by substructure
if query and not mol.HasSubstructMatch(query):
continue
# find atom and bond matches
atom_ids, bond_ids = [], []
if highlight and query:
atom_ids = list(mol.GetSubstructMatch(query))
# find bonds where both ends are in atom_ids
for bond in mol.GetBonds():
a1 = bond.GetBeginAtomIdx()
a2 = bond.GetEndAtomIdx()
if a1 in atom_ids and a2 in atom_ids:
bond_ids.append(bond.GetIdx())
legend = (
f"{row['Name']} pIC50={row['pIC50']:.2f}\n"
f"MW={row['MW']:.1f}, logP={row['logP']:.2f}\n"
f"HBD={row['HBD']}, HBA={row['HBA']}"
)
legends.append((mol, legend, atom_ids, bond_ids))
if not legends:
raise ValueError("No molecules passed the filter.")
# draw each filtered molecule
images = []
for mol, legend, atom_ids, bond_ids in legends:
drawer = rdMolDraw2D.MolDraw2DCairo(400, 350)
opts = drawer.drawOptions()
opts.legendFontSize = 200
drawer.DrawMolecule(mol, legend=legend, highlightAtoms=atom_ids, highlightBonds=bond_ids)
drawer.FinishDrawing()
sub_png = drawer.GetDrawingText()
sub_img = Image.open(io.BytesIO(sub_png))
images.append(sub_img)
plot_gallery(images, num_cols=mols_per_row)
@op("LynxKite Graph Analytics", "Lipinski filter")
def lipinski_filter(bundle, *, table_name: str, column_name: str, strict_lipinski: bool = True):
# copy bundle and get DataFrame
bundle = bundle.copy()
df = bundle.dfs[table_name].copy()
df["mol"] = df[column_name].apply(Chem.MolFromSmiles)
df = df[df["mol"].notnull()].reset_index(drop=True)
# compute properties
df["MW"] = df["mol"].apply(Descriptors.MolWt)
df["logP"] = df["mol"].apply(Crippen.MolLogP)
df["HBD"] = df["mol"].apply(Lipinski.NumHDonors)
df["HBA"] = df["mol"].apply(Lipinski.NumHAcceptors)
# compute a boolean pass/fail for Lipinski
df["pass_lipinski"] = (
(df["MW"] <= 500) & (df["logP"] <= 5) & (df["HBD"] <= 5) & (df["HBA"] <= 10)
)
df = df.drop("mol", axis=1)
# if strict_lipinski, drop those that fail
if strict_lipinski:
failed = df.loc[~df["pass_lipinski"], column_name].tolist()
df = df[df["pass_lipinski"]].reset_index(drop=True)
if failed:
print(f"Dropped {len(failed)} molecules that failed Lipinski: {failed}")
return df
@op("LynxKite Graph Analytics", "View mol image", view="matplotlib", slow=True)
def mol_image(bundle, *, table_name: str, smiles_column: str, mols_per_row: int):
df = bundle.dfs[table_name].copy()
df["mol"] = df[smiles_column].apply(Chem.MolFromSmiles)
df = df[df["mol"].notnull()].reset_index(drop=True)
df["MW"] = df["mol"].apply(Descriptors.MolWt)
df["logP"] = df["mol"].apply(Crippen.MolLogP)
df["HBD"] = df["mol"].apply(Lipinski.NumHDonors)
df["HBA"] = df["mol"].apply(Lipinski.NumHAcceptors)
legends = []
for _, row in df.iterrows():
legends.append(
f"{row['Name']} pIC50={row['pIC50']:.2f}\n"
f"MW={row['MW']:.1f}, logP={row['logP']:.2f}\n"
f"HBD={row['HBD']}, HBA={row['HBA']}"
)
mols = df["mol"].tolist()
if not mols:
raise ValueError("No valid molecules to draw.")
# --- draw each molecule into its own sub‐image and paste ---
images = []
for mol, legend in zip(mols, legends):
# draw one molecule
drawer = rdMolDraw2D.MolDraw2DCairo(400, 350)
opts = drawer.drawOptions()
opts.legendFontSize = 200
drawer.DrawMolecule(mol, legend=legend)
drawer.FinishDrawing()
sub_png = drawer.GetDrawingText()
sub_img = Image.open(io.BytesIO(sub_png))
images.append(sub_img)
plot_gallery(images, num_cols=mols_per_row)
def plot_gallery(images, num_cols):
num_rows = math.ceil(len(images) / num_cols)
fig, axes = plt.subplots(num_rows, num_cols, figsize=(num_cols * 4, num_rows * 3.5))
axes = axes.flatten()
for i, ax in enumerate(axes):
if i < len(images):
ax.imshow(images[i])
ax.set_xticks([])
ax.set_yticks([])
plt.tight_layout()
@op("LynxKite Graph Analytics", "Train QSAR model")
def build_qsar_model(
bundle,
*,
table_name: str,
smiles_col: str,
target_col: str,
fp_type: str,
radius: int = 2,
n_bits: int = 2048,
test_size: float = 0.2,
random_state: int = 42,
out_dir: str = "Models",
):
"""
Train and save a RandomForest QSAR model using one fingerprint type.
Parameters
----------
bundle : any
An object with a dict‐like attribute `.dfs` mapping table names to DataFrames.
table_name : str
Key into bundle.dfs to get the DataFrame.
smiles_col : str
Name of the column containing SMILES strings.
target_col : str
Name of the column containing the numeric response.
fp_type : str
Fingerprint to compute: "ecfp", "rdkit", "torsion", "atompair", or "maccs".
radius : int
Radius for the Morgan (ECFP) fingerprint.
n_bits : int
Bit‐vector length for all fp types except MACCS (167).
test_size : float
Fraction of data held out for testing.
random_state : int
Random seed for reproducibility.
out_dir : str
Directory in which to save `qsar_model_<fp_type>.pkl`.
Returns
-------
model : RandomForestRegressor
The trained QSAR model.
metrics_df : pandas.DataFrame
R², MAE and RMSE on train and test splits.
"""
# 1) load and sanitize data
df = bundle.dfs.get(table_name)
if df is None:
raise KeyError(f"Table '{table_name}' not found in bundle.dfs")
df = df.copy()
df["mol"] = df[smiles_col].apply(Chem.MolFromSmiles)
df = df[df["mol"].notnull()].reset_index(drop=True)
if df.empty:
raise ValueError(f"No valid molecules in '{smiles_col}'")
# 2) create a fixed train/test split
indices = np.arange(len(df))
train_idx, test_idx = train_test_split(indices, test_size=test_size, random_state=random_state)
# 3) featurize
fps = []
for mol in df["mol"]:
if fp_type == "ecfp":
bv = AllChem.GetMorganFingerprintAsBitVect(mol, radius, nBits=n_bits)
arr = np.zeros((n_bits,), dtype=np.int8)
DataStructs.ConvertToNumpyArray(bv, arr)
elif fp_type == "rdkit":
bv = Chem.RDKFingerprint(mol, fpSize=n_bits)
arr = np.zeros((n_bits,), dtype=np.int8)
DataStructs.ConvertToNumpyArray(bv, arr)
elif fp_type == "torsion":
bv = AllChem.GetHashedTopologicalTorsionFingerprintAsBitVect(mol, nBits=n_bits)
arr = np.zeros((n_bits,), dtype=np.int8)
DataStructs.ConvertToNumpyArray(bv, arr)
elif fp_type == "atompair":
bv = AllChem.GetHashedAtomPairFingerprintAsBitVect(mol, nBits=n_bits)
arr = np.zeros((n_bits,), dtype=np.int8)
DataStructs.ConvertToNumpyArray(bv, arr)
elif fp_type == "maccs":
bv = Chem.MACCSkeys.GenMACCSKeys(mol) # 167 bits
arr = np.zeros((167,), dtype=np.int8)
DataStructs.ConvertToNumpyArray(bv, arr)
else:
raise ValueError(f"Unsupported fingerprint type: '{fp_type}'")
fps.append(arr)
X = np.vstack(fps)
y = df[target_col].values
# 4) split features/labels
X_train, y_train = X[train_idx], y[train_idx]
X_test, y_test = X[test_idx], y[test_idx]
# 5) train RandomForest
model = RandomForestRegressor(random_state=random_state)
model.fit(X_train, y_train)
# 6) compute performance metrics
def _metrics(y_true, y_pred):
mse = mean_squared_error(y_true, y_pred)
return {
"R2": r2_score(y_true, y_pred),
"MAE": mean_absolute_error(y_true, y_pred),
"RMSE": np.sqrt(mse),
}
train_m = _metrics(y_train, model.predict(X_train))
test_m = _metrics(y_test, model.predict(X_test))
metrics_df = pd.DataFrame([{"split": "train", **train_m}, {"split": "test", **test_m}])
# 7) save the model
os.makedirs(out_dir, exist_ok=True)
model_file = os.path.join(out_dir, f"qsar_model_{fp_type}.pkl")
with open(model_file, "wb") as fout:
pickle.dump(model, fout)
print(f"Trained & saved QSAR model for '{fp_type}' → {model_file}")
return metrics_df
def predict_with_ci(model, X, confidence=0.95):
"""
Calculates predictions and confidence intervals for a RandomForestRegressor.
(Implementation is the same as in the previous answer)
"""
# Get predictions from each individual tree
tree_preds = np.array([tree.predict(X) for tree in model.estimators_])
# Calculate mean prediction
y_pred_mean = np.mean(tree_preds, axis=0)
# Calculate percentiles for confidence interval
alpha = (1.0 - confidence) / 2.0
lower_percentile = alpha * 100
upper_percentile = (1.0 - alpha) * 100
y_pred_lower = np.percentile(tree_preds, lower_percentile, axis=0)
y_pred_upper = np.percentile(tree_preds, upper_percentile, axis=0)
return y_pred_mean, y_pred_lower, y_pred_upper
# --- End of predict_with_ci definition ---
@op("LynxKite Graph Analytics", "Train QSAR2")
def build_qsar_model2(
df: pd.DataFrame,
*,
smiles_col: str,
target_col: str,
fp_type: str,
radius: int = 2,
n_bits: int = 2048,
test_size: float = 0.2,
random_state: int = 42,
out_dir: str = "Models",
confidence: float = 0.95,
):
"""
Train/save RandomForest QSAR model, returning the model and a results DataFrame.
The results DataFrame contains per-point data ('actual', 'predicted',
'lower_ci', 'upper_ci', 'split') AND repeated summary metrics for each
split ('split_R2', 'split_MAE', 'split_RMSE').
Parameters
----------
(Parameters are the same as before)
bundle : any
table_name : str
smiles_col : str
target_col : str
fp_type : str
radius : int
n_bits : int
test_size : float
random_state : int
out_dir : str
confidence : float, optional
Returns
-------
model : RandomForestRegressor
The trained QSAR model.
results_df : pandas.DataFrame
DataFrame containing columns: 'actual', 'predicted', 'lower_ci',
'upper_ci', 'split', 'split_R2', 'split_MAE', 'split_RMSE'.
The metric columns repeat the overall metric for the corresponding split.
"""
# Steps 1-5: Load data, split, featurize, split features, train model
# (Code is identical to previous versions up to model training)
# ... (load data, sanitize, split indices) ...
# df = bundle.dfs.get(table_name)
df = df.copy()
if df is None:
raise KeyError("Table not found")
df[target_col] = pd.to_numeric(df[target_col], errors="coerce")
df.dropna(subset=[target_col, smiles_col], inplace=True)
df["mol"] = df[smiles_col].apply(Chem.MolFromSmiles)
df = df[df["mol"].notnull()].reset_index(drop=True)
if df.empty:
raise ValueError("No valid molecules or targets")
indices = np.arange(len(df))
train_idx, test_idx = train_test_split(indices, test_size=test_size, random_state=random_state)
print(f"Featurizing using {fp_type}...")
fps = []
valid_indices = []
for i, mol in enumerate(df["mol"]):
try:
# ... (fp generation logic as before) ...
if fp_type == "ecfp":
bv = AllChem.GetMorganFingerprintAsBitVect(mol, radius, nBits=n_bits)
current_n_bits = n_bits
elif fp_type == "rdkit":
bv = Chem.RDKFingerprint(mol, fpSize=n_bits)
current_n_bits = n_bits
elif fp_type == "torsion":
bv = AllChem.GetHashedTopologicalTorsionFingerprintAsBitVect(mol, nBits=n_bits)
current_n_bits = n_bits
elif fp_type == "atompair":
bv = AllChem.GetHashedAtomPairFingerprintAsBitVect(mol, nBits=n_bits)
current_n_bits = n_bits
elif fp_type == "maccs":
bv = MACCSkeys.GenMACCSKeys(mol) # 167 bits
current_n_bits = 167
else:
raise ValueError(f"Unsupported fp type: '{fp_type}'")
arr = np.zeros((current_n_bits,), dtype=np.int8)
DataStructs.ConvertToNumpyArray(bv, arr)
fps.append(arr)
valid_indices.append(i)
except Exception as e:
print(f"Warning: Featurization failed index {i}. Skipping. Error: {e}")
continue
if not fps:
raise ValueError("No molecules featurized.")
X = np.vstack(fps)
df_filtered = df.iloc[valid_indices].reset_index(drop=True)
y = df_filtered[target_col].values
# original_indices_set = set(valid_indices)
train_idx_filtered = [
i for i, original_idx in enumerate(valid_indices) if original_idx in train_idx
]
test_idx_filtered = [
i for i, original_idx in enumerate(valid_indices) if original_idx in test_idx
]
X_train, y_train = X[train_idx_filtered], y[train_idx_filtered]
X_test, y_test = X[test_idx_filtered], y[test_idx_filtered]
if X_train.shape[0] == 0 or X_test.shape[0] == 0:
raise ValueError("Train or test split empty after filtering.")
print("Training RandomForestRegressor...")
model = RandomForestRegressor(random_state=random_state, n_jobs=-1)
model.fit(X_train, y_train)
# 6) Compute predictions and *summary* performance metrics
print("Calculating predictions and metrics...")
y_pred_train, lower_ci_train, upper_ci_train = predict_with_ci(model, X_train, confidence)
y_pred_test, lower_ci_test, upper_ci_test = predict_with_ci(model, X_test, confidence)
def _metrics(y_true, y_pred_mean):
# (Same helper function as before)
y_true = np.ravel(y_true)
y_pred_mean = np.ravel(y_pred_mean)
if len(y_true) == 0:
return {"R2": np.nan, "MAE": np.nan, "RMSE": np.nan}
mse = mean_squared_error(y_true, y_pred_mean)
return {
"R2": r2_score(y_true, y_pred_mean),
"MAE": mean_absolute_error(y_true, y_pred_mean),
"RMSE": np.sqrt(mse),
}
train_metrics_dict = _metrics(y_train, y_pred_train)
test_metrics_dict = _metrics(y_test, y_pred_test)
# 7) Create results DataFrames and ADD metrics columns
train_results = pd.DataFrame(
{
"actual": y_train,
"predicted": y_pred_train,
"lower_ci": lower_ci_train,
"upper_ci": upper_ci_train,
"split": "train",
}
)
# Add repeated metrics
for metric, value in train_metrics_dict.items():
train_results[f"split_{metric}"] = value
test_results = pd.DataFrame(
{
"actual": y_test,
"predicted": y_pred_test,
"lower_ci": lower_ci_test,
"upper_ci": upper_ci_test,
"split": "test",
}
)
# Add repeated metrics
for metric, value in test_metrics_dict.items():
test_results[f"split_{metric}"] = value
# Concatenate into the final DataFrame
results_df = pd.concat([train_results, test_results], ignore_index=True)
# 8) Save the model (same as before)
os.makedirs(out_dir, exist_ok=True)
model_file = os.path.join(out_dir, f"qsar_model_{fp_type}.pkl")
try:
with open(model_file, "wb") as fout:
pickle.dump(model, fout)
print(f"Trained & saved QSAR model for '{fp_type}' -> {model_file}")
except Exception as e:
print(f"Error saving model to {model_file}: {e}")
return results_df
@op("LynxKite Graph Analytics", "plot qsar", view="matplotlib")
def plot_qsar(results_df: pd.DataFrame):
"""
Plots actual vs. predicted values from a QSAR results DataFrame.
Requires a single positional argument: the results DataFrame. All other
parameters are optional keyword arguments. It extracts summary metrics
directly from columns ('split_R2', 'split_MAE', 'split_RMSE')
expected within the results_df.
"""
title = "QSAR Model Performance: Actual vs. Predicted"
xlabel = "Actual Values"
ylabel = "Predicted Values"
show_metrics = True
if not isinstance(results_df, pd.DataFrame):
raise TypeError(
"plot_qsar() missing 1 required positional argument: 'results_df' or the provided argument is not a pandas DataFrame."
)
required_cols = ["actual", "predicted", "lower_ci", "upper_ci", "split"]
if not all(col in results_df.columns for col in required_cols):
raise ValueError(f"Invalid 'results_df'. Must contain columns: {required_cols}")
metric_cols = ["split_R2", "split_MAE", "split_RMSE"]
metrics_available = all(col in results_df.columns for col in metric_cols)
if show_metrics and not metrics_available:
print(
f"Warning: Metrics display requested, but one or more metric columns ({metric_cols}) are missing in results_df."
)
# --- Prepare Data ---
train_data = results_df[results_df["split"] == "train"]
test_data = results_df[results_df["split"] == "test"]
can_plot_train = not train_data.empty
can_plot_test = not test_data.empty
if not can_plot_train and not can_plot_test:
print("Warning: Both training and test data subsets are empty. Cannot generate plot.")
return # Exit function early if no data
# --- Create Plot (Internal Figure/Axes) ---
fig, ax = plt.subplots(figsize=(8, 8))
# --- Plotting Logic ---
# (Draws scatter, error bars, line, grid, labels, title, legend on 'ax')
if can_plot_train:
train_error = [
train_data["predicted"] - train_data["lower_ci"],
train_data["upper_ci"] - train_data["predicted"],
]
ax.scatter(
train_data["actual"],
train_data["predicted"],
label="Train",
alpha=0.6,
s=30,
edgecolors="w",
linewidth=0.5,
)
ax.errorbar(
train_data["actual"],
train_data["predicted"],
yerr=train_error,
fmt="none",
ecolor="tab:blue",
label="_nolegend_",
capsize=0,
elinewidth=1,
)
if can_plot_test:
test_error = [
test_data["predicted"] - test_data["lower_ci"],
test_data["upper_ci"] - test_data["predicted"],
]
ax.scatter(
test_data["actual"],
test_data["predicted"],
label="Test",
alpha=0.8,
s=40,
edgecolors="w",
linewidth=0.5,
)
ax.errorbar(
test_data["actual"],
test_data["predicted"],
yerr=test_error,
fmt="none",
ecolor="tab:orange",
label="_nolegend_",
capsize=0,
elinewidth=1,
)
all_actual = results_df["actual"].dropna()
all_pred_ci = pd.concat(
[results_df["predicted"], results_df["lower_ci"], results_df["upper_ci"]]
).dropna()
all_values = pd.concat([all_actual, all_pred_ci]).dropna()
if all_values.empty:
min_val, max_val = 0, 1
else:
min_val, max_val = all_values.min(), all_values.max()
if min_val == max_val:
min_val -= 0.5
max_val += 0.5
padding = (max_val - min_val) * 0.05
min_val -= padding
max_val += padding
ax.plot([min_val, max_val], [min_val, max_val], "k--", alpha=0.7, lw=1, label="y=x")
ax.set_xlim(min_val, max_val)
ax.set_ylim(min_val, max_val)
ax.set_aspect("equal", adjustable="box")
ax.grid(True, linestyle=":", alpha=0.6)
ax.set_xlabel(xlabel)
ax.set_ylabel(ylabel)
ax.set_title(title)
ax.legend(loc="lower right")
# --- Display Metrics Text ---
if show_metrics and metrics_available:
# (Logic for extracting and formatting metrics text remains the same)
metrics_text = ""
try:
if can_plot_train:
train_metrics = train_data[metric_cols].iloc[0]
r2_tr = (
f"{train_metrics['split_R2']:.3f}"
if pd.notna(train_metrics["split_R2"])
else "N/A"
)
mae_tr = (
f"{train_metrics['split_MAE']:.3f}"
if pd.notna(train_metrics["split_MAE"])
else "N/A"
)
rmse_tr = (
f"{train_metrics['split_RMSE']:.3f}"
if pd.notna(train_metrics["split_RMSE"])
else "N/A"
)
metrics_text += f"Train: $R^2$={r2_tr}, MAE={mae_tr}, RMSE={rmse_tr}\n"
else:
metrics_text += "Train: N/A (No Data)\n"
if can_plot_test:
test_metrics = test_data[metric_cols].iloc[0]
r2_te = (
f"{test_metrics['split_R2']:.3f}"
if pd.notna(test_metrics["split_R2"])
else "N/A"
)
mae_te = (
f"{test_metrics['split_MAE']:.3f}"
if pd.notna(test_metrics["split_MAE"])
else "N/A"
)
rmse_te = (
f"{test_metrics['split_RMSE']:.3f}"
if pd.notna(test_metrics["split_RMSE"])
else "N/A"
)
metrics_text += f"Test: $R^2$={r2_te}, MAE={mae_te}, RMSE={rmse_te}"
else:
metrics_text += "Test: N/A (No Data)"
if metrics_text:
ax.text(
0.05,
0.95,
metrics_text.strip(),
transform=ax.transAxes,
fontsize=9,
verticalalignment="top",
bbox=dict(boxstyle="round,pad=0.5", fc="white", alpha=0.8),
)
except Exception as e:
print(f"An error occurred during metrics display: {e}")
ax.text(
0.05,
0.95,
"Error displaying metrics",
transform=ax.transAxes,
fontsize=9,
color="red",
verticalalignment="top",
bbox=dict(boxstyle="round,pad=0.5", fc="white", alpha=0.8),
)
@op("LynxKite Graph Analytics", "plot qsar2", view="matplotlib")
def plot_qsar2(results_df: pd.DataFrame):
"""
Plots actual vs. predicted values resembling the example image.
Includes separate markers for train/test, y=x line, and parallel dashed
error bands based on test set RMSE (optional). Does NOT use per-point CIs.
Handles displaying the plot via plt.show() or saving it to a file
based on the `save_path` parameter. THIS FUNCTION DOES NOT RETURN ANY VALUE.
Parameters
----------
results_df : pd.DataFrame
Mandatory input DataFrame. Must contain: 'actual', 'predicted', 'split'.
Should also contain 'split_RMSE' column for error bands and metrics display.
title : str, optional
xlabel : str, optional
ylabel : str, optional
rmse_multiplier_for_bands : float or None, optional
Determines the width of the dashed error bands (multiplier * test_RMSE).
Set to None to disable bands. Default is 1.0.
show_metrics : bool, optional
Whether to display R2/MAE/RMSE text (requires metric columns). Default is True.
save_path : str, optional
If provided, saves plot to this path. If None (default), displays plot.
Raises
------
ValueError / TypeError : For invalid inputs.
"""
COLOR_TRAIN = "royalblue"
COLOR_TEST = "darkorange" # Changed from red for potentially better contrast/appeal
COLOR_PERFECT = "black"
COLOR_BANDS = "dimgrey" # Less prominent than the perfect line
COLOR_GRID = "lightgrey"
title = "QSAR Model Performance: Actual vs. Predicted"
xlabel = "Actual Values"
ylabel = "Predicted Values"
# ci_alpha = 0.2
show_metrics = True
rmse_multiplier_for_bands = 1.0
# --- Input Validation ---
if not isinstance(results_df, pd.DataFrame):
raise TypeError("Input must be a pandas DataFrame.")
required_cols = ["actual", "predicted", "split"]
if not all(col in results_df.columns for col in required_cols):
raise ValueError(f"DataFrame must contain columns: {required_cols}")
metric_cols = ["split_R2", "split_MAE", "split_RMSE"]
metrics_available = all(col in results_df.columns for col in metric_cols)
bands_possible = rmse_multiplier_for_bands is not None and "split_RMSE" in results_df.columns
if show_metrics and not metrics_available:
print(
f"Warning: Metrics display requested, but one or more metric columns ({metric_cols}) are missing."
)
if rmse_multiplier_for_bands is not None and "split_RMSE" not in results_df.columns:
print("Warning: Error bands requested, but 'split_RMSE' column is missing.")
bands_possible = False
# --- Prepare Data ---
train_data = results_df[results_df["split"] == "train"].copy()
test_data = results_df[results_df["split"] == "test"].copy()
can_plot_train = not train_data.empty
can_plot_test = not test_data.empty
if not can_plot_train and not can_plot_test:
print("Warning: Both training and test data subsets are empty. Cannot generate plot.")
return
# --- Create Plot with Style ---
plt.style.use("seaborn-v0_8-whitegrid") # Use a cleaner base style
fig, ax = plt.subplots(figsize=(8, 8)) # Slightly larger figure
# --- Plotting Logic ---
# Scatter plots with enhanced style
common_scatter_kws = {"s": 45, "alpha": 0.75, "edgecolor": "black", "linewidth": 0.5}
if can_plot_train:
ax.scatter(
train_data["actual"],
train_data["predicted"],
label="Training set",
marker="o",
color=COLOR_TRAIN,
**common_scatter_kws,
) # Blue circles
if can_plot_test:
ax.scatter(
test_data["actual"],
test_data["predicted"],
label="Test set",
marker="o",
color=COLOR_TEST,
**common_scatter_kws,
) # Orange circles
# Determine plot limits
# (Using the same logic as before to calculate min_val, max_val)
all_actual = results_df["actual"].dropna()
all_pred = results_df["predicted"].dropna()
all_values = pd.concat([all_actual, all_pred]).dropna()
if all_values.empty:
min_val, max_val = 0, 1
else:
min_val, max_val = all_values.min(), all_values.max()
if min_val == max_val:
min_val -= 0.5
max_val += 0.5
data_range = max_val - min_val
if data_range == 0:
data_range = 1.0
padding = data_range * 0.10
min_val -= padding
max_val += padding
# Plot y=x line (Solid Black, slightly thicker)
ax.plot(
[min_val, max_val],
[min_val, max_val],
color=COLOR_PERFECT,
linestyle="-",
linewidth=1.5,
alpha=0.9,
label="_nolegend_",
)
# Plot Error Bands based on Test RMSE (subtler style)
rmse_test = np.nan
if bands_possible and can_plot_test:
try:
rmse_test = test_data["split_RMSE"].dropna().iloc[0]
if pd.notna(rmse_test) and rmse_test >= 0:
margin = rmse_multiplier_for_bands * rmse_test
band_label = (
f"$\pm {rmse_multiplier_for_bands}\,$RMSE"
if rmse_multiplier_for_bands == 1
else f"$\pm {rmse_multiplier_for_bands}\,$RMSE"
)
ax.plot(
[min_val, max_val],
[min_val + margin, max_val + margin],
color=COLOR_BANDS,
linestyle="--",
linewidth=1.0,
alpha=0.7,
label=band_label,
) # Grey dashed
ax.plot(
[min_val, max_val],
[min_val - margin, max_val - margin],
color=COLOR_BANDS,
linestyle="--",
linewidth=1.0,
alpha=0.7,
label="_nolegend_",
) # Grey dashed
# else: print("Warning: Could not plot error bands (Invalid Test RMSE).") # Optionally silent
except Exception as e:
print(f"Warning: Could not plot error bands: {e}")
# Set limits and aspect ratio
ax.set_xlim(min_val, max_val)
ax.set_ylim(min_val, max_val)
ax.set_aspect("equal", adjustable="box")
# ADD BACK Grid (Subtle Style)
ax.grid(True, which="both", linestyle=":", linewidth=0.7, color=COLOR_GRID, alpha=0.7)
# Ensure grid is behind data points
ax.set_axisbelow(True)
# Set Labels and Title (using specified arguments)
ax.set_xlabel(xlabel, fontsize=12)
ax.set_ylabel(ylabel, fontsize=12)
ax.set_title(title, fontsize=15, pad=15, weight="semibold") # Slightly larger title
# Enhance Legend
ax.legend(loc="best", frameon=True, framealpha=0.85, fontsize=10, shadow=False)
# --- Display Metrics Text (Optional) ---
if show_metrics and metrics_available:
# (Logic for extracting and formatting metrics text remains the same)
metrics_text = ""
try:
if can_plot_train:
train_metrics = train_data[metric_cols].dropna().iloc[0] # Ensure using valid row
r2_tr = f"{train_metrics['split_R2']:.3f}"
mae_tr = f"{train_metrics['split_MAE']:.3f}"
rmse_tr = f"{train_metrics['split_RMSE']:.3f}"
metrics_text += f"Train: $R^2$={r2_tr}, MAE={mae_tr}, RMSE={rmse_tr}\n"
else:
metrics_text += "Train: N/A\n"
if can_plot_test:
test_metrics = test_data[metric_cols].dropna().iloc[0] # Ensure using valid row
r2_te = f"{test_metrics['split_R2']:.3f}"
mae_te = f"{test_metrics['split_MAE']:.3f}"
rmse_te = f"{test_metrics['split_RMSE']:.3f}"
metrics_text += f"Test: $R^2$={r2_te}, MAE={mae_te}, RMSE={rmse_te}"
else:
metrics_text += "Test: N/A"
if metrics_text:
ax.text(
0.05,
0.95,
metrics_text.strip(),
transform=ax.transAxes,
fontsize=9,
verticalalignment="top",
bbox=dict(boxstyle="round,pad=0.3", fc="white", alpha=0.7),
) # Adjusted box slightly
except Exception as e:
print(f"An error occurred during metrics display: {e}")