File size: 2,752 Bytes
a40ce12
 
e6c4009
c827f71
e6c4009
 
 
a4cdc2d
 
 
 
 
 
 
 
 
 
 
c827f71
 
 
e6c4009
 
c827f71
d8b117a
 
 
10a7c50
 
 
72a66f4
 
 
 
 
 
 
 
 
 
d8b117a
 
c827f71
d8b117a
 
c827f71
a40ce12
 
 
 
c827f71
 
 
 
 
ef5294d
c827f71
a40ce12
 
ef5294d
 
 
 
a40ce12
 
 
 
 
 
72a66f4
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
import os
import subprocess
import openai
import gradio as gr

openai.api_key = "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"

import requests

API_URL = "https://api-inference.huggingface.co/models/lyimo/whisper-small-sw2"
headers = {"Authorization": "Bearer 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"}

def query(filename):
    with open(filename, "rb") as f:
        data = f.read()
    response = requests.post(API_URL, headers=headers, data=data)
    return response.json()

def transcribe(audio):
    with open(audio, "rb") as audio_file:
        transcript = openai.Audio.transcribe("whisper-1", audio_file)
    return transcript["text"]

def generate_response(transcribed_text):
    response = openai.ChatCompletion.create(
        model="gpt-3.5-turbo",
        messages=[
            {"role": "system", "content": "Wewe ni mtaalamu wa viazi lishe, utajibu maswali yote kwa kiswahili"},
            {"role": "user", "content": "Mambo vipi?"},
            {"role": "assistant", "content": """Salama je una swali lolote kuhusu viazi lishe?"""},
            {"role": "user", "content": "nini maana ya Viazi lishe?"},
            {"role": "assistant", "content": """ viazi lishe ni Viazi vitamu vyenye rangi ya karoti kwa ndani ambavyo vina vitamin A kwa wingi"""},
            {"role": "user", "content": "nini matumizi ya viazi lishe?"},
            {"role": "assistant", "content": """ viazi lishe vinaweza kutengenezea chakula kama Keki, 
            Maandazi, Kalimati na tambi: Ukisaga unga wa viazi lishe, 
            unaweza kutumika kupika vyakula ambavyo huwa watu 
            hutumia unga wa ngano kupika, unga wa viazi lishe una 
            virutubisho vingi zaidi kuliko unga wa ngano na 
            ukitumika kupikia vyakula tajwa hapo juu watumiaji 
            watakuwa wanakula vyakula vyenye virutubisho Zaidi."""},
            {"role": "user", "content": transcribed_text},
        ]
    )
    return response['choices'][0]['message']['content']

def inference(text):
    output_file = "tts_output.wav"
    cmd = ['tts', '--text', text, '--out_path', output_file]
    subprocess.run(cmd, check=True)
    return output_file

def process_audio_and_respond(audio):
    text = transcribe(audio)
    response_text = generate_response(text)
    output_file = inference(response_text)
    return output_file

demo = gr.Interface(
    process_audio_and_respond,
    gr.inputs.Audio(source="microphone", type="filepath", label="Bofya Kuuliza Swali"),
    gr.outputs.Audio(type="filepath", label="Bofya Kusikiliza Jibu"),
    title="Uliza Mtaalamu wa Viazi Lishe",
    description="Je ungependa Kujua nini kuhusu viazi Lishe?",
    theme="compact",
    layout="vertical",
    allow_flagging=False,
    live=True,
)

demo.launch()