Update app.py
Browse files
app.py
CHANGED
@@ -3,174 +3,14 @@ import gradio as gr
|
|
3 |
import requests
|
4 |
import inspect
|
5 |
import pandas as pd
|
6 |
-
from google import genai
|
7 |
-
from google.genai import types
|
8 |
import time
|
9 |
-
from smolagents import CodeAgent, DuckDuckGoSearchTool, WikipediaSearchTool, PythonInterpreterTool, FinalAnswerTool, LiteLLMModel
|
10 |
|
11 |
|
12 |
# (Keep Constants as is)
|
13 |
# --- Constants ---
|
14 |
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
|
15 |
|
16 |
-
# --- Basic Agent Definition ---
|
17 |
-
# ----- THIS IS WERE YOU CAN BUILD WHAT YOU WANT ------
|
18 |
-
# class BasicAgent:
|
19 |
-
# def __init__(self):
|
20 |
-
# print("BasicAgent initialized.")
|
21 |
-
# def __call__(self, question: str) -> str:
|
22 |
-
# print(f"Agent received question (first 50 chars): {question[:50]}...")
|
23 |
-
# fixed_answer = "This is a default answer."
|
24 |
-
# print(f"Agent returning fixed answer: {fixed_answer}")
|
25 |
-
# return fixed_answer
|
26 |
-
|
27 |
-
# class GeminiModel:
|
28 |
-
# def __init__(self, model_name="gemini-2.0-flash-exp"):
|
29 |
-
# api_key = os.getenv("GEMINI_API_KEY")
|
30 |
-
# if not api_key:
|
31 |
-
# raise ValueError("GEMINI_API_KEY is missing.")
|
32 |
-
|
33 |
-
# os.environ["GOOGLE_API_KEY"] = api_key
|
34 |
-
# self.client = genai.Client()
|
35 |
-
# self.model_id = model_name
|
36 |
-
|
37 |
-
# self.generation_config = types.GenerateContentConfig(
|
38 |
-
# temperature=0.4,
|
39 |
-
# top_p=0.9,
|
40 |
-
# top_k=40,
|
41 |
-
# candidate_count=1,
|
42 |
-
# seed=42,
|
43 |
-
# presence_penalty=0.0,
|
44 |
-
# frequency_penalty=0.0,
|
45 |
-
# )
|
46 |
-
|
47 |
-
# def __call__(self, prompt: str, **kwargs) -> str:
|
48 |
-
# """Send prompt to Gemini."""
|
49 |
-
# try:
|
50 |
-
# response = self.client.generate_content(
|
51 |
-
# model=self.model_id,
|
52 |
-
# contents=[{"role": "user", "parts": [{"text": prompt}]}],
|
53 |
-
# generation_config=self.generation_config
|
54 |
-
# )
|
55 |
-
# # Return a dictionary that CodeAgent expects
|
56 |
-
# return {"content": response.candidates[0].content.parts[0].text.strip()}
|
57 |
-
# except Exception as e:
|
58 |
-
# return {"content": f"Error during Gemini call: {str(e)}"}
|
59 |
-
|
60 |
-
# # Define BasicAgent properly
|
61 |
-
# class BasicAgent:
|
62 |
-
# def __init__(self):
|
63 |
-
# print("Initializing CodeAgent with Gemini + tools.")
|
64 |
-
|
65 |
-
# # Load tools
|
66 |
-
# self.search_tool = DuckDuckGoSearchTool()
|
67 |
-
|
68 |
-
# # Build the agent
|
69 |
-
# self.agent = CodeAgent(
|
70 |
-
# tools=[self.search_tool],
|
71 |
-
# model=GeminiModel(), # Our simple Gemini wrapper
|
72 |
-
# planning_interval=3 # Activate planning
|
73 |
-
# )
|
74 |
-
|
75 |
-
# def __call__(self, question: str) -> str:
|
76 |
-
# """Call the CodeAgent."""
|
77 |
-
# print(f"Running agent for task: {question[:50]}...")
|
78 |
-
# try:
|
79 |
-
# result = self.agent.run(question)
|
80 |
-
|
81 |
-
# # Sleep to respect rate limits
|
82 |
-
# time.sleep(7)
|
83 |
-
# return result
|
84 |
-
# except Exception as e:
|
85 |
-
# return f"Error running agent: {str(e)}"
|
86 |
-
|
87 |
-
# class BasicAgent(ReActAgent):
|
88 |
-
# def __init__(self):
|
89 |
-
# print("BasicAgent using local LLM initialized.")
|
90 |
-
|
91 |
-
# # Load a small model from Hugging Face
|
92 |
-
# model_name = "TinyLlama/TinyLlama-1.1B-Chat-v1.0"
|
93 |
-
# self.tokenizer = AutoTokenizer.from_pretrained(model_name)
|
94 |
-
# self.model = AutoModelForCausalLM.from_pretrained(
|
95 |
-
# model_name,
|
96 |
-
# torch_dtype=torch.float16,
|
97 |
-
# device_map="auto" # Automatically choose GPU/CPU
|
98 |
-
# )
|
99 |
-
|
100 |
-
# super().__init__(tools=[]) # No tools for now
|
101 |
-
|
102 |
-
# def call(self, task: str) -> str:
|
103 |
-
# """Core method for answering a task."""
|
104 |
-
# prompt = f"Answer the following question concisely:\n\n{task}\n\nAnswer:"
|
105 |
-
# inputs = self.tokenizer(prompt, return_tensors="pt").to(self.model.device)
|
106 |
-
|
107 |
-
# with torch.no_grad():
|
108 |
-
# outputs = self.model.generate(
|
109 |
-
# **inputs,
|
110 |
-
# max_new_tokens=200,
|
111 |
-
# do_sample=True,
|
112 |
-
# temperature=0.7,
|
113 |
-
# top_p=0.95,
|
114 |
-
# top_k=50,
|
115 |
-
# )
|
116 |
-
# answer = self.tokenizer.decode(outputs[0], skip_special_tokens=True)
|
117 |
-
|
118 |
-
# # Extract only the answer part
|
119 |
-
# return answer.split("Answer:")[-1].strip()
|
120 |
-
|
121 |
-
# class BasicAgent:
|
122 |
-
# def __init__(self):
|
123 |
-
# print("BasicAgent using local LLM initialized.")
|
124 |
-
|
125 |
-
# # Load a small Hugging Face model
|
126 |
-
# model_name = "TinyLlama/TinyLlama-1.1B-Chat-v1.0" # Change if you want
|
127 |
-
# self.tokenizer = AutoTokenizer.from_pretrained(model_name)
|
128 |
-
# self.model = AutoModelForCausalLM.from_pretrained(
|
129 |
-
# model_name,
|
130 |
-
# torch_dtype=torch.float16,
|
131 |
-
# device_map="auto" # Use GPU if available
|
132 |
-
# )
|
133 |
-
|
134 |
-
# def __call__(self, task: str) -> str:
|
135 |
-
# """Answer a question."""
|
136 |
-
# prompt = f"Answer the following question clearly and concisely:\n\n{task}\n\nAnswer:"
|
137 |
-
# inputs = self.tokenizer(prompt, return_tensors="pt").to(self.model.device)
|
138 |
-
|
139 |
-
# with torch.no_grad():
|
140 |
-
# outputs = self.model.generate(
|
141 |
-
# **inputs,
|
142 |
-
# max_new_tokens=256,
|
143 |
-
# do_sample=True,
|
144 |
-
# temperature=0.7,
|
145 |
-
# top_p=0.9,
|
146 |
-
# top_k=50,
|
147 |
-
# )
|
148 |
-
# decoded = self.tokenizer.decode(outputs[0], skip_special_tokens=True)
|
149 |
-
|
150 |
-
# # Extract the answer part
|
151 |
-
# if "Answer:" in decoded:
|
152 |
-
# return decoded.split("Answer:")[-1].strip()
|
153 |
-
# return decoded.strip()
|
154 |
-
|
155 |
-
|
156 |
-
|
157 |
-
# # Setup Gemini Client
|
158 |
-
# api_key = os.getenv("GEMINI_API_KEY")
|
159 |
-
# if not api_key:
|
160 |
-
# raise ValueError("GEMINI_API_KEY is missing.")
|
161 |
-
# os.environ["GOOGLE_API_KEY"] = api_key
|
162 |
-
# client = genai.Client()
|
163 |
-
# model_id = "gemini-2.0-flash-exp"
|
164 |
-
|
165 |
-
# generation_config = types.GenerateContentConfig(
|
166 |
-
# temperature=0.4,
|
167 |
-
# top_p=0.9,
|
168 |
-
# top_k=40,
|
169 |
-
# candidate_count=1,
|
170 |
-
# seed=42,
|
171 |
-
# presence_penalty=0.0,
|
172 |
-
# frequency_penalty=0.0,
|
173 |
-
# )
|
174 |
|
175 |
|
176 |
# Define the real agent
|
@@ -178,7 +18,7 @@ class BasicAgent:
|
|
178 |
def __init__(self):
|
179 |
print("Improved BasicAgent initialized with Gemini and enhanced tools.")
|
180 |
|
181 |
-
# Load Gemini through LiteLLM
|
182 |
self.model = LiteLLMModel(
|
183 |
model_id="gemini/gemini-2.0-flash-lite",
|
184 |
api_key=os.getenv("GEMINI_API_TOKEN"),
|
@@ -219,8 +59,8 @@ class BasicAgent:
|
|
219 |
result = f"Error: {str(e)}"
|
220 |
|
221 |
# Rate limiting to avoid 429 errors or API limits
|
222 |
-
print("Waiting
|
223 |
-
time.sleep(
|
224 |
|
225 |
return result
|
226 |
|
|
|
3 |
import requests
|
4 |
import inspect
|
5 |
import pandas as pd
|
|
|
|
|
6 |
import time
|
7 |
+
from smolagents import CodeAgent, DuckDuckGoSearchTool, WikipediaSearchTool, PythonInterpreterTool, FinalAnswerTool, LiteLLMModel
|
8 |
|
9 |
|
10 |
# (Keep Constants as is)
|
11 |
# --- Constants ---
|
12 |
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
|
13 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
14 |
|
15 |
|
16 |
# Define the real agent
|
|
|
18 |
def __init__(self):
|
19 |
print("Improved BasicAgent initialized with Gemini and enhanced tools.")
|
20 |
|
21 |
+
# Load Gemini through LiteLLM
|
22 |
self.model = LiteLLMModel(
|
23 |
model_id="gemini/gemini-2.0-flash-lite",
|
24 |
api_key=os.getenv("GEMINI_API_TOKEN"),
|
|
|
59 |
result = f"Error: {str(e)}"
|
60 |
|
61 |
# Rate limiting to avoid 429 errors or API limits
|
62 |
+
print("Waiting 5 seconds to respect rate limits...")
|
63 |
+
time.sleep(5)
|
64 |
|
65 |
return result
|
66 |
|