Spaces:
Running
Running
import streamlit as st | |
from transformers import pipeline, AutoModelForCausalLM, AutoTokenizer | |
import os | |
import torch | |
from huggingface_hub import login | |
login(os.getenv('HF_LOGIN')) | |
token_step_size = 20 | |
model_id = "utter-project/EuroLLM-1.7B-Instruct" | |
tokenizer = AutoTokenizer.from_pretrained(model_id, torch_dtype=torch.bfloat16) | |
model = AutoModelForCausalLM.from_pretrained(model_id, torch_dtype=torch.bfloat16) | |
model.generation_config.pad_token_id = tokenizer.pad_token_id | |
inner = st.text_area('enter some input!') | |
text = '<|im_start|>user\n'+inner+'<|im_end|>\n<|im_start|>assistant\n' | |
if inner: | |
inputs = tokenizer(text, return_tensors="pt") | |
outputs = model.generate(**inputs, max_new_tokens=token_step_size) | |
st.write(tokenizer.decode(outputs[0][-token_step_size:], skip_special_tokens=False)) | |
while (not torch.any(outputs[0][-token_step_size:] == 4)): | |
outputs = model.generate(input_ids=outputs, attention_mask=torch.ones_like(outputs),max_new_tokens=token_step_size) | |
st.write(tokenizer.decode(outputs[0][-token_step_size:], skip_special_tokens=False))#, end=' ', flush=True) |