import streamlit as st from transformers import pipeline, AutoModelForCausalLM, AutoTokenizer import os import torch from huggingface_hub import login login(os.getenv('HF_LOGIN')) token_step_size = 20 model_id = "utter-project/EuroLLM-1.7B-Instruct" tokenizer = AutoTokenizer.from_pretrained(model_id, torch_dtype=torch.bfloat16) model = AutoModelForCausalLM.from_pretrained(model_id, torch_dtype=torch.bfloat16) model.generation_config.pad_token_id = tokenizer.pad_token_id inner = st.text_area('enter some input!') text = '<|im_start|>user\n'+inner+'<|im_end|>\n<|im_start|>assistant\n' if inner: inputs = tokenizer(text, return_tensors="pt") outputs = model.generate(**inputs, max_new_tokens=token_step_size) st.write(tokenizer.decode(outputs[0][-token_step_size:], skip_special_tokens=False)) while (not torch.any(outputs[0][-token_step_size:] == 4)): outputs = model.generate(input_ids=outputs, attention_mask=torch.ones_like(outputs),max_new_tokens=token_step_size) st.write(tokenizer.decode(outputs[0][-token_step_size:], skip_special_tokens=False))#, end=' ', flush=True)