lukisko commited on
Commit
b2d4c7d
·
verified ·
1 Parent(s): 0666689

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +5 -4
app.py CHANGED
@@ -8,7 +8,7 @@ from huggingface_hub import login
8
  login(os.getenv('HF_LOGIN'))
9
 
10
  token_step_size = 20
11
- model_id = "utter-project/EuroLLM-1.7B-Instruct"
12
  tokenizer = AutoTokenizer.from_pretrained(model_id, torch_dtype=torch.bfloat16)
13
  model = AutoModelForCausalLM.from_pretrained(model_id, torch_dtype=torch.bfloat16)
14
  model.generation_config.pad_token_id = tokenizer.pad_token_id
@@ -16,10 +16,11 @@ model.generation_config.pad_token_id = tokenizer.pad_token_id
16
  inner = st.text_area('enter some input!')
17
  text = '<|im_start|><|im_end|>user\n'+inner+'<|im_end|>\n<|im_start|>assistant\n'
18
 
19
- inputs = tokenizer(text, return_tensors="pt")
20
- outputs = model.generate(**inputs, max_new_tokens=token_step_size)
21
-
22
  if inner:
 
 
 
 
23
  while (not torch.any(outputs[0][-token_step_size:] == 4)):
24
  outputs = model.generate(input_ids=outputs, attention_mask=torch.ones_like(outputs),max_new_tokens=token_step_size)
25
  st.write(tokenizer.decode(outputs[0][-token_step_size:], skip_special_tokens=False))#, end=' ', flush=True)
 
8
  login(os.getenv('HF_LOGIN'))
9
 
10
  token_step_size = 20
11
+ model_id = "utter-project/EuroLLM-9B-Instruct"
12
  tokenizer = AutoTokenizer.from_pretrained(model_id, torch_dtype=torch.bfloat16)
13
  model = AutoModelForCausalLM.from_pretrained(model_id, torch_dtype=torch.bfloat16)
14
  model.generation_config.pad_token_id = tokenizer.pad_token_id
 
16
  inner = st.text_area('enter some input!')
17
  text = '<|im_start|><|im_end|>user\n'+inner+'<|im_end|>\n<|im_start|>assistant\n'
18
 
 
 
 
19
  if inner:
20
+ inputs = tokenizer(text, return_tensors="pt")
21
+ outputs = model.generate(**inputs, max_new_tokens=token_step_size)
22
+ st.write(tokenizer.decode(outputs[0][-token_step_size:], skip_special_tokens=False))
23
+
24
  while (not torch.any(outputs[0][-token_step_size:] == 4)):
25
  outputs = model.generate(input_ids=outputs, attention_mask=torch.ones_like(outputs),max_new_tokens=token_step_size)
26
  st.write(tokenizer.decode(outputs[0][-token_step_size:], skip_special_tokens=False))#, end=' ', flush=True)