Update app.py
Browse files
app.py
CHANGED
@@ -8,7 +8,7 @@ from huggingface_hub import login
|
|
8 |
login(os.getenv('HF_LOGIN'))
|
9 |
|
10 |
token_step_size = 20
|
11 |
-
model_id = "utter-project/EuroLLM-
|
12 |
tokenizer = AutoTokenizer.from_pretrained(model_id, torch_dtype=torch.bfloat16)
|
13 |
model = AutoModelForCausalLM.from_pretrained(model_id, torch_dtype=torch.bfloat16)
|
14 |
model.generation_config.pad_token_id = tokenizer.pad_token_id
|
@@ -16,10 +16,11 @@ model.generation_config.pad_token_id = tokenizer.pad_token_id
|
|
16 |
inner = st.text_area('enter some input!')
|
17 |
text = '<|im_start|><|im_end|>user\n'+inner+'<|im_end|>\n<|im_start|>assistant\n'
|
18 |
|
19 |
-
inputs = tokenizer(text, return_tensors="pt")
|
20 |
-
outputs = model.generate(**inputs, max_new_tokens=token_step_size)
|
21 |
-
|
22 |
if inner:
|
|
|
|
|
|
|
|
|
23 |
while (not torch.any(outputs[0][-token_step_size:] == 4)):
|
24 |
outputs = model.generate(input_ids=outputs, attention_mask=torch.ones_like(outputs),max_new_tokens=token_step_size)
|
25 |
st.write(tokenizer.decode(outputs[0][-token_step_size:], skip_special_tokens=False))#, end=' ', flush=True)
|
|
|
8 |
login(os.getenv('HF_LOGIN'))
|
9 |
|
10 |
token_step_size = 20
|
11 |
+
model_id = "utter-project/EuroLLM-9B-Instruct"
|
12 |
tokenizer = AutoTokenizer.from_pretrained(model_id, torch_dtype=torch.bfloat16)
|
13 |
model = AutoModelForCausalLM.from_pretrained(model_id, torch_dtype=torch.bfloat16)
|
14 |
model.generation_config.pad_token_id = tokenizer.pad_token_id
|
|
|
16 |
inner = st.text_area('enter some input!')
|
17 |
text = '<|im_start|><|im_end|>user\n'+inner+'<|im_end|>\n<|im_start|>assistant\n'
|
18 |
|
|
|
|
|
|
|
19 |
if inner:
|
20 |
+
inputs = tokenizer(text, return_tensors="pt")
|
21 |
+
outputs = model.generate(**inputs, max_new_tokens=token_step_size)
|
22 |
+
st.write(tokenizer.decode(outputs[0][-token_step_size:], skip_special_tokens=False))
|
23 |
+
|
24 |
while (not torch.any(outputs[0][-token_step_size:] == 4)):
|
25 |
outputs = model.generate(input_ids=outputs, attention_mask=torch.ones_like(outputs),max_new_tokens=token_step_size)
|
26 |
st.write(tokenizer.decode(outputs[0][-token_step_size:], skip_special_tokens=False))#, end=' ', flush=True)
|