Luis Oala commited on
Commit
76860ac
·
1 Parent(s): d62813f
Files changed (2) hide show
  1. app.py +4 -6
  2. app.py~ +9 -8
app.py CHANGED
@@ -183,14 +183,12 @@ def to_base64(pil_image):
183
  pil_image.save(buffered, format="JPEG")
184
  return base64.b64encode(buffered.getvalue())
185
 
186
- title = "Interactive demo: glide-text2im"
187
- description = "Demo for OpenAI's GLIDE: Towards Photorealistic Image Generation and Editing with Text-Guided Diffusion Models."
188
- article = "<p style='text-align: center'><a href='https://arxiv.org/abs/2112.10741'>GLIDE: Towards Photorealistic Image Generation and Editing with Text-Guided Diffusion Models</a> | <a href='https://github.com/openai/glide-text2im/'>Official Repo</a></p>"
189
- examples =["an oil painting of a corgi"]
190
 
191
  iface = gr.Interface(fn=sample,
192
- inputs=gr.inputs.Textbox(label='What would you like to see?'),
193
- outputs=gr.outputs.Image(type="pil", label="Model input + completions"),
194
  title=title,
195
  description=description,
196
  article=article,
 
183
  pil_image.save(buffered, format="JPEG")
184
  return base64.b64encode(buffered.getvalue())
185
 
186
+ title = "glide test"
187
+ description = "text conditioned image generation demo using openai's GLIDE model (text-guided diffusion model) https://arxiv.org/abs/2112.10741 & https://github.com/openai/glide-text2im/. should take ~500s to run. credit to valhalla for gradio template https://huggingface.co/spaces/valhalla/."
 
 
188
 
189
  iface = gr.Interface(fn=sample,
190
+ inputs=gr.inputs.Textbox(label='enter text'),
191
+ outputs=gr.outputs.Image(type="pil", label="model input + completions"),
192
  title=title,
193
  description=description,
194
  article=article,
app.py~ CHANGED
@@ -1,4 +1,3 @@
1
-
2
  import os
3
  os.system('pip install -e .')
4
  import gradio as gr
@@ -24,6 +23,10 @@ from glide_text2im.model_creation import (
24
  # On CPU, generating one sample may take on the order of 20 minutes.
25
  # On a GPU, it should be under a minute.
26
 
 
 
 
 
27
  has_cuda = th.cuda.is_available()
28
  device = th.device('cpu' if not has_cuda else 'cuda')
29
 
@@ -180,17 +183,15 @@ def to_base64(pil_image):
180
  pil_image.save(buffered, format="JPEG")
181
  return base64.b64encode(buffered.getvalue())
182
 
183
- title = "Interactive demo: glide-text2im"
184
- description = "Demo for OpenAI's GLIDE: Towards Photorealistic Image Generation and Editing with Text-Guided Diffusion Models."
185
- article = "<p style='text-align: center'><a href='https://arxiv.org/abs/2112.10741'>GLIDE: Towards Photorealistic Image Generation and Editing with Text-Guided Diffusion Models</a> | <a href='https://github.com/openai/glide-text2im/'>Official Repo</a></p>"
186
- examples =["an oil painting of a corgi"]
187
 
188
  iface = gr.Interface(fn=sample,
189
- inputs=gr.inputs.Textbox(label='What would you like to see?'),
190
- outputs=gr.outputs.Image(type="pil", label="Model input + completions"),
191
  title=title,
192
  description=description,
193
  article=article,
194
  examples=examples,
195
  enable_queue=True)
196
- iface.launch(debug=True)
 
 
1
  import os
2
  os.system('pip install -e .')
3
  import gradio as gr
 
23
  # On CPU, generating one sample may take on the order of 20 minutes.
24
  # On a GPU, it should be under a minute.
25
 
26
+ """
27
+ credit: follows the gradio glide example by valhalla https://huggingface.co/spaces/valhalla/glide-text2im
28
+ """
29
+
30
  has_cuda = th.cuda.is_available()
31
  device = th.device('cpu' if not has_cuda else 'cuda')
32
 
 
183
  pil_image.save(buffered, format="JPEG")
184
  return base64.b64encode(buffered.getvalue())
185
 
186
+ title = "glide test"
187
+ description = "text conditioned image generation demo using openai's GLIDE model (text-guided diffusion model) https://arxiv.org/abs/2112.10741 & https://github.com/openai/glide-text2im/. Credit to valhalla for gradio template https://huggingface.co/spaces/valhalla/."
 
 
188
 
189
  iface = gr.Interface(fn=sample,
190
+ inputs=gr.inputs.Textbox(label='enter text'),
191
+ outputs=gr.outputs.Image(type="pil", label="model input + completions"),
192
  title=title,
193
  description=description,
194
  article=article,
195
  examples=examples,
196
  enable_queue=True)
197
+ iface.launch(debug=True)