Spaces:
Runtime error
Runtime error
Luis Oala
commited on
Commit
·
06e8e4d
1
Parent(s):
e237845
fix
Browse files- README.md~ +0 -37
- app.py~ +0 -201
- server.py~ +0 -246
README.md~
DELETED
@@ -1,37 +0,0 @@
|
|
1 |
-
---
|
2 |
-
title: Glide Text2im
|
3 |
-
emoji: 📊
|
4 |
-
colorFrom: purple
|
5 |
-
colorTo: gray
|
6 |
-
sdk: gradio
|
7 |
-
app_file: app.py
|
8 |
-
pinned: false
|
9 |
-
---
|
10 |
-
|
11 |
-
# Configuration
|
12 |
-
|
13 |
-
`title`: _string_
|
14 |
-
Display title for the Space
|
15 |
-
|
16 |
-
`emoji`: _string_
|
17 |
-
Space emoji (emoji-only character allowed)
|
18 |
-
|
19 |
-
`colorFrom`: _string_
|
20 |
-
Color for Thumbnail gradient (red, yellow, green, blue, indigo, purple, pink, gray)
|
21 |
-
|
22 |
-
`colorTo`: _string_
|
23 |
-
Color for Thumbnail gradient (red, yellow, green, blue, indigo, purple, pink, gray)
|
24 |
-
|
25 |
-
`sdk`: _string_
|
26 |
-
Can be either `gradio` or `streamlit`
|
27 |
-
|
28 |
-
`sdk_version` : _string_
|
29 |
-
Only applicable for `streamlit` SDK.
|
30 |
-
See [doc](https://hf.co/docs/hub/spaces) for more info on supported versions.
|
31 |
-
|
32 |
-
`app_file`: _string_
|
33 |
-
Path to your main application file (which contains either `gradio` or `streamlit` Python code).
|
34 |
-
Path is relative to the root of the repository.
|
35 |
-
|
36 |
-
`pinned`: _boolean_
|
37 |
-
Whether the Space stays on top of your list.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
app.py~
DELETED
@@ -1,201 +0,0 @@
|
|
1 |
-
|
2 |
-
import os
|
3 |
-
os.system('pip install -e .')
|
4 |
-
import gradio as gr
|
5 |
-
|
6 |
-
import base64
|
7 |
-
from io import BytesIO
|
8 |
-
# from fastapi import FastAPI
|
9 |
-
|
10 |
-
from PIL import Image
|
11 |
-
import torch as th
|
12 |
-
|
13 |
-
from glide_text2im.download import load_checkpoint
|
14 |
-
from glide_text2im.model_creation import (
|
15 |
-
create_model_and_diffusion,
|
16 |
-
model_and_diffusion_defaults,
|
17 |
-
model_and_diffusion_defaults_upsampler
|
18 |
-
)
|
19 |
-
|
20 |
-
"""
|
21 |
-
credit: follows the gradio glide example by valhalla https://huggingface.co/spaces/valhalla/glide-text2im
|
22 |
-
"""
|
23 |
-
|
24 |
-
|
25 |
-
# print("Loading models...")
|
26 |
-
# app = FastAPI()
|
27 |
-
|
28 |
-
# This notebook supports both CPU and GPU.
|
29 |
-
# On CPU, generating one sample may take on the order of 20 minutes.
|
30 |
-
# On a GPU, it should be under a minute.
|
31 |
-
|
32 |
-
has_cuda = th.cuda.is_available()
|
33 |
-
device = th.device('cpu' if not has_cuda else 'cuda')
|
34 |
-
|
35 |
-
# Create base model.
|
36 |
-
options = model_and_diffusion_defaults()
|
37 |
-
options['use_fp16'] = has_cuda
|
38 |
-
options['timestep_respacing'] = '100' # use 100 diffusion steps for fast sampling
|
39 |
-
model, diffusion = create_model_and_diffusion(**options)
|
40 |
-
model.eval()
|
41 |
-
if has_cuda:
|
42 |
-
model.convert_to_fp16()
|
43 |
-
model.to(device)
|
44 |
-
model.load_state_dict(load_checkpoint('base', device))
|
45 |
-
print('total base parameters', sum(x.numel() for x in model.parameters()))
|
46 |
-
|
47 |
-
# Create upsampler model.
|
48 |
-
options_up = model_and_diffusion_defaults_upsampler()
|
49 |
-
options_up['use_fp16'] = has_cuda
|
50 |
-
options_up['timestep_respacing'] = 'fast27' # use 27 diffusion steps for very fast sampling
|
51 |
-
model_up, diffusion_up = create_model_and_diffusion(**options_up)
|
52 |
-
model_up.eval()
|
53 |
-
if has_cuda:
|
54 |
-
model_up.convert_to_fp16()
|
55 |
-
model_up.to(device)
|
56 |
-
model_up.load_state_dict(load_checkpoint('upsample', device))
|
57 |
-
print('total upsampler parameters', sum(x.numel() for x in model_up.parameters()))
|
58 |
-
|
59 |
-
|
60 |
-
def get_images(batch: th.Tensor):
|
61 |
-
""" Display a batch of images inline. """
|
62 |
-
scaled = ((batch + 1)*127.5).round().clamp(0,255).to(th.uint8).cpu()
|
63 |
-
reshaped = scaled.permute(2, 0, 3, 1).reshape([batch.shape[2], -1, 3])
|
64 |
-
return Image.fromarray(reshaped.numpy())
|
65 |
-
|
66 |
-
|
67 |
-
# Create a classifier-free guidance sampling function
|
68 |
-
guidance_scale = 3.0
|
69 |
-
|
70 |
-
def model_fn(x_t, ts, **kwargs):
|
71 |
-
half = x_t[: len(x_t) // 2]
|
72 |
-
combined = th.cat([half, half], dim=0)
|
73 |
-
model_out = model(combined, ts, **kwargs)
|
74 |
-
eps, rest = model_out[:, :3], model_out[:, 3:]
|
75 |
-
cond_eps, uncond_eps = th.split(eps, len(eps) // 2, dim=0)
|
76 |
-
half_eps = uncond_eps + guidance_scale * (cond_eps - uncond_eps)
|
77 |
-
eps = th.cat([half_eps, half_eps], dim=0)
|
78 |
-
return th.cat([eps, rest], dim=1)
|
79 |
-
|
80 |
-
|
81 |
-
# @app.get("/")
|
82 |
-
def read_root():
|
83 |
-
return {"glide!"}
|
84 |
-
|
85 |
-
# @app.get("/{generate}")
|
86 |
-
def sample(prompt):
|
87 |
-
# Sampling parameters
|
88 |
-
batch_size = 1
|
89 |
-
|
90 |
-
# Tune this parameter to control the sharpness of 256x256 images.
|
91 |
-
# A value of 1.0 is sharper, but sometimes results in grainy artifacts.
|
92 |
-
upsample_temp = 0.997
|
93 |
-
|
94 |
-
##############################
|
95 |
-
# Sample from the base model #
|
96 |
-
##############################
|
97 |
-
|
98 |
-
# Create the text tokens to feed to the model.
|
99 |
-
tokens = model.tokenizer.encode(prompt)
|
100 |
-
tokens, mask = model.tokenizer.padded_tokens_and_mask(
|
101 |
-
tokens, options['text_ctx']
|
102 |
-
)
|
103 |
-
|
104 |
-
# Create the classifier-free guidance tokens (empty)
|
105 |
-
full_batch_size = batch_size * 2
|
106 |
-
uncond_tokens, uncond_mask = model.tokenizer.padded_tokens_and_mask(
|
107 |
-
[], options['text_ctx']
|
108 |
-
)
|
109 |
-
|
110 |
-
# Pack the tokens together into model kwargs.
|
111 |
-
model_kwargs = dict(
|
112 |
-
tokens=th.tensor(
|
113 |
-
[tokens] * batch_size + [uncond_tokens] * batch_size, device=device
|
114 |
-
),
|
115 |
-
mask=th.tensor(
|
116 |
-
[mask] * batch_size + [uncond_mask] * batch_size,
|
117 |
-
dtype=th.bool,
|
118 |
-
device=device,
|
119 |
-
),
|
120 |
-
)
|
121 |
-
|
122 |
-
# Sample from the base model.
|
123 |
-
model.del_cache()
|
124 |
-
samples = diffusion.p_sample_loop(
|
125 |
-
model_fn,
|
126 |
-
(full_batch_size, 3, options["image_size"], options["image_size"]),
|
127 |
-
device=device,
|
128 |
-
clip_denoised=True,
|
129 |
-
progress=True,
|
130 |
-
model_kwargs=model_kwargs,
|
131 |
-
cond_fn=None,
|
132 |
-
)[:batch_size]
|
133 |
-
model.del_cache()
|
134 |
-
|
135 |
-
|
136 |
-
##############################
|
137 |
-
# Upsample the 64x64 samples #
|
138 |
-
##############################
|
139 |
-
|
140 |
-
tokens = model_up.tokenizer.encode(prompt)
|
141 |
-
tokens, mask = model_up.tokenizer.padded_tokens_and_mask(
|
142 |
-
tokens, options_up['text_ctx']
|
143 |
-
)
|
144 |
-
|
145 |
-
# Create the model conditioning dict.
|
146 |
-
model_kwargs = dict(
|
147 |
-
# Low-res image to upsample.
|
148 |
-
low_res=((samples+1)*127.5).round()/127.5 - 1,
|
149 |
-
|
150 |
-
# Text tokens
|
151 |
-
tokens=th.tensor(
|
152 |
-
[tokens] * batch_size, device=device
|
153 |
-
),
|
154 |
-
mask=th.tensor(
|
155 |
-
[mask] * batch_size,
|
156 |
-
dtype=th.bool,
|
157 |
-
device=device,
|
158 |
-
),
|
159 |
-
)
|
160 |
-
|
161 |
-
# Sample from the base model.
|
162 |
-
model_up.del_cache()
|
163 |
-
up_shape = (batch_size, 3, options_up["image_size"], options_up["image_size"])
|
164 |
-
up_samples = diffusion_up.ddim_sample_loop(
|
165 |
-
model_up,
|
166 |
-
up_shape,
|
167 |
-
noise=th.randn(up_shape, device=device) * upsample_temp,
|
168 |
-
device=device,
|
169 |
-
clip_denoised=True,
|
170 |
-
progress=True,
|
171 |
-
model_kwargs=model_kwargs,
|
172 |
-
cond_fn=None,
|
173 |
-
)[:batch_size]
|
174 |
-
model_up.del_cache()
|
175 |
-
|
176 |
-
# Show the output
|
177 |
-
image = get_images(up_samples)
|
178 |
-
# image = to_base64(image)
|
179 |
-
# return {"image": image}
|
180 |
-
return image
|
181 |
-
|
182 |
-
|
183 |
-
def to_base64(pil_image):
|
184 |
-
buffered = BytesIO()
|
185 |
-
pil_image.save(buffered, format="JPEG")
|
186 |
-
return base64.b64encode(buffered.getvalue())
|
187 |
-
|
188 |
-
title = "Interactive demo: glide-text2im"
|
189 |
-
description = "Demo for OpenAI's GLIDE: Towards Photorealistic Image Generation and Editing with Text-Guided Diffusion Models."
|
190 |
-
article = "<p style='text-align: center'><a href='https://arxiv.org/abs/2112.10741'>GLIDE: Towards Photorealistic Image Generation and Editing with Text-Guided Diffusion Models</a> | <a href='https://github.com/openai/glide-text2im/'>Official Repo</a></p>"
|
191 |
-
examples =["an oil painting of a corgi"]
|
192 |
-
|
193 |
-
iface = gr.Interface(fn=sample,
|
194 |
-
inputs=gr.inputs.Textbox(label='What would you like to see?'),
|
195 |
-
outputs=gr.outputs.Image(type="pil", label="Model input + completions"),
|
196 |
-
title=title,
|
197 |
-
description=description,
|
198 |
-
article=article,
|
199 |
-
examples=examples,
|
200 |
-
enable_queue=True)
|
201 |
-
iface.launch(debug=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
server.py~
DELETED
@@ -1,246 +0,0 @@
|
|
1 |
-
import base64
|
2 |
-
from io import BytesIO
|
3 |
-
from fastapi import FastAPI
|
4 |
-
<<<<<<< HEAD
|
5 |
-
|
6 |
-
from PIL import Image
|
7 |
-
import torch as th
|
8 |
-
|
9 |
-
=======
|
10 |
-
from PIL import Image
|
11 |
-
import torch as th
|
12 |
-
>>>>>>> 8c239b8a9cdaf13e28c145e788b984c129547a37
|
13 |
-
from glide_text2im.download import load_checkpoint
|
14 |
-
from glide_text2im.model_creation import (
|
15 |
-
create_model_and_diffusion,
|
16 |
-
model_and_diffusion_defaults,
|
17 |
-
model_and_diffusion_defaults_upsampler
|
18 |
-
)
|
19 |
-
<<<<<<< HEAD
|
20 |
-
|
21 |
-
print("Loading models...")
|
22 |
-
app = FastAPI()
|
23 |
-
|
24 |
-
# This notebook supports both CPU and GPU.
|
25 |
-
# On CPU, generating one sample may take on the order of 20 minutes.
|
26 |
-
# On a GPU, it should be under a minute.
|
27 |
-
|
28 |
-
has_cuda = th.cuda.is_available()
|
29 |
-
device = th.device('cpu' if not has_cuda else 'cuda')
|
30 |
-
|
31 |
-
=======
|
32 |
-
print("Loading models...")
|
33 |
-
app = FastAPI()
|
34 |
-
# This notebook supports both CPU and GPU.
|
35 |
-
# On CPU, generating one sample may take on the order of 20 minutes.
|
36 |
-
# On a GPU, it should be under a minute.
|
37 |
-
has_cuda = th.cuda.is_available()
|
38 |
-
device = th.device('cpu' if not has_cuda else 'cuda')
|
39 |
-
>>>>>>> 8c239b8a9cdaf13e28c145e788b984c129547a37
|
40 |
-
# Create base model.
|
41 |
-
options = model_and_diffusion_defaults()
|
42 |
-
options['use_fp16'] = has_cuda
|
43 |
-
options['timestep_respacing'] = '100' # use 100 diffusion steps for fast sampling
|
44 |
-
model, diffusion = create_model_and_diffusion(**options)
|
45 |
-
model.eval()
|
46 |
-
if has_cuda:
|
47 |
-
model.convert_to_fp16()
|
48 |
-
model.to(device)
|
49 |
-
model.load_state_dict(load_checkpoint('base', device))
|
50 |
-
print('total base parameters', sum(x.numel() for x in model.parameters()))
|
51 |
-
<<<<<<< HEAD
|
52 |
-
|
53 |
-
=======
|
54 |
-
>>>>>>> 8c239b8a9cdaf13e28c145e788b984c129547a37
|
55 |
-
# Create upsampler model.
|
56 |
-
options_up = model_and_diffusion_defaults_upsampler()
|
57 |
-
options_up['use_fp16'] = has_cuda
|
58 |
-
options_up['timestep_respacing'] = 'fast27' # use 27 diffusion steps for very fast sampling
|
59 |
-
model_up, diffusion_up = create_model_and_diffusion(**options_up)
|
60 |
-
model_up.eval()
|
61 |
-
if has_cuda:
|
62 |
-
model_up.convert_to_fp16()
|
63 |
-
model_up.to(device)
|
64 |
-
model_up.load_state_dict(load_checkpoint('upsample', device))
|
65 |
-
print('total upsampler parameters', sum(x.numel() for x in model_up.parameters()))
|
66 |
-
<<<<<<< HEAD
|
67 |
-
|
68 |
-
|
69 |
-
=======
|
70 |
-
>>>>>>> 8c239b8a9cdaf13e28c145e788b984c129547a37
|
71 |
-
def get_images(batch: th.Tensor):
|
72 |
-
""" Display a batch of images inline. """
|
73 |
-
scaled = ((batch + 1)*127.5).round().clamp(0,255).to(th.uint8).cpu()
|
74 |
-
reshaped = scaled.permute(2, 0, 3, 1).reshape([batch.shape[2], -1, 3])
|
75 |
-
Image.fromarray(reshaped.numpy())
|
76 |
-
<<<<<<< HEAD
|
77 |
-
|
78 |
-
|
79 |
-
# Create a classifier-free guidance sampling function
|
80 |
-
guidance_scale = 3.0
|
81 |
-
|
82 |
-
=======
|
83 |
-
# Create a classifier-free guidance sampling function
|
84 |
-
guidance_scale = 3.0
|
85 |
-
>>>>>>> 8c239b8a9cdaf13e28c145e788b984c129547a37
|
86 |
-
def model_fn(x_t, ts, **kwargs):
|
87 |
-
half = x_t[: len(x_t) // 2]
|
88 |
-
combined = th.cat([half, half], dim=0)
|
89 |
-
model_out = model(combined, ts, **kwargs)
|
90 |
-
eps, rest = model_out[:, :3], model_out[:, 3:]
|
91 |
-
cond_eps, uncond_eps = th.split(eps, len(eps) // 2, dim=0)
|
92 |
-
half_eps = uncond_eps + guidance_scale * (cond_eps - uncond_eps)
|
93 |
-
eps = th.cat([half_eps, half_eps], dim=0)
|
94 |
-
return th.cat([eps, rest], dim=1)
|
95 |
-
<<<<<<< HEAD
|
96 |
-
|
97 |
-
|
98 |
-
@app.get("/")
|
99 |
-
def read_root():
|
100 |
-
return {"glide!"}
|
101 |
-
|
102 |
-
=======
|
103 |
-
@app.get("/")
|
104 |
-
def read_root():
|
105 |
-
return {"glide!"}
|
106 |
-
>>>>>>> 8c239b8a9cdaf13e28c145e788b984c129547a37
|
107 |
-
@app.get("/{generate}")
|
108 |
-
def sample(prompt):
|
109 |
-
# Sampling parameters
|
110 |
-
batch_size = 1
|
111 |
-
<<<<<<< HEAD
|
112 |
-
|
113 |
-
# Tune this parameter to control the sharpness of 256x256 images.
|
114 |
-
# A value of 1.0 is sharper, but sometimes results in grainy artifacts.
|
115 |
-
upsample_temp = 0.997
|
116 |
-
|
117 |
-
##############################
|
118 |
-
# Sample from the base model #
|
119 |
-
##############################
|
120 |
-
|
121 |
-
=======
|
122 |
-
# Tune this parameter to control the sharpness of 256x256 images.
|
123 |
-
# A value of 1.0 is sharper, but sometimes results in grainy artifacts.
|
124 |
-
upsample_temp = 0.997
|
125 |
-
##############################
|
126 |
-
# Sample from the base model #
|
127 |
-
##############################
|
128 |
-
>>>>>>> 8c239b8a9cdaf13e28c145e788b984c129547a37
|
129 |
-
# Create the text tokens to feed to the model.
|
130 |
-
tokens = model.tokenizer.encode(prompt)
|
131 |
-
tokens, mask = model.tokenizer.padded_tokens_and_mask(
|
132 |
-
tokens, options['text_ctx']
|
133 |
-
)
|
134 |
-
<<<<<<< HEAD
|
135 |
-
|
136 |
-
=======
|
137 |
-
>>>>>>> 8c239b8a9cdaf13e28c145e788b984c129547a37
|
138 |
-
# Create the classifier-free guidance tokens (empty)
|
139 |
-
full_batch_size = batch_size * 2
|
140 |
-
uncond_tokens, uncond_mask = model.tokenizer.padded_tokens_and_mask(
|
141 |
-
[], options['text_ctx']
|
142 |
-
)
|
143 |
-
<<<<<<< HEAD
|
144 |
-
|
145 |
-
=======
|
146 |
-
>>>>>>> 8c239b8a9cdaf13e28c145e788b984c129547a37
|
147 |
-
# Pack the tokens together into model kwargs.
|
148 |
-
model_kwargs = dict(
|
149 |
-
tokens=th.tensor(
|
150 |
-
[tokens] * batch_size + [uncond_tokens] * batch_size, device=device
|
151 |
-
),
|
152 |
-
mask=th.tensor(
|
153 |
-
[mask] * batch_size + [uncond_mask] * batch_size,
|
154 |
-
dtype=th.bool,
|
155 |
-
device=device,
|
156 |
-
),
|
157 |
-
)
|
158 |
-
<<<<<<< HEAD
|
159 |
-
|
160 |
-
=======
|
161 |
-
>>>>>>> 8c239b8a9cdaf13e28c145e788b984c129547a37
|
162 |
-
# Sample from the base model.
|
163 |
-
model.del_cache()
|
164 |
-
samples = diffusion.p_sample_loop(
|
165 |
-
model_fn,
|
166 |
-
(full_batch_size, 3, options["image_size"], options["image_size"]),
|
167 |
-
device=device,
|
168 |
-
clip_denoised=True,
|
169 |
-
progress=True,
|
170 |
-
model_kwargs=model_kwargs,
|
171 |
-
cond_fn=None,
|
172 |
-
)[:batch_size]
|
173 |
-
model.del_cache()
|
174 |
-
<<<<<<< HEAD
|
175 |
-
|
176 |
-
|
177 |
-
##############################
|
178 |
-
# Upsample the 64x64 samples #
|
179 |
-
##############################
|
180 |
-
|
181 |
-
=======
|
182 |
-
##############################
|
183 |
-
# Upsample the 64x64 samples #
|
184 |
-
##############################
|
185 |
-
>>>>>>> 8c239b8a9cdaf13e28c145e788b984c129547a37
|
186 |
-
tokens = model_up.tokenizer.encode(prompt)
|
187 |
-
tokens, mask = model_up.tokenizer.padded_tokens_and_mask(
|
188 |
-
tokens, options_up['text_ctx']
|
189 |
-
)
|
190 |
-
<<<<<<< HEAD
|
191 |
-
|
192 |
-
=======
|
193 |
-
>>>>>>> 8c239b8a9cdaf13e28c145e788b984c129547a37
|
194 |
-
# Create the model conditioning dict.
|
195 |
-
model_kwargs = dict(
|
196 |
-
# Low-res image to upsample.
|
197 |
-
low_res=((samples+1)*127.5).round()/127.5 - 1,
|
198 |
-
<<<<<<< HEAD
|
199 |
-
|
200 |
-
=======
|
201 |
-
>>>>>>> 8c239b8a9cdaf13e28c145e788b984c129547a37
|
202 |
-
# Text tokens
|
203 |
-
tokens=th.tensor(
|
204 |
-
[tokens] * batch_size, device=device
|
205 |
-
),
|
206 |
-
mask=th.tensor(
|
207 |
-
[mask] * batch_size,
|
208 |
-
dtype=th.bool,
|
209 |
-
device=device,
|
210 |
-
),
|
211 |
-
)
|
212 |
-
<<<<<<< HEAD
|
213 |
-
|
214 |
-
=======
|
215 |
-
>>>>>>> 8c239b8a9cdaf13e28c145e788b984c129547a37
|
216 |
-
# Sample from the base model.
|
217 |
-
model_up.del_cache()
|
218 |
-
up_shape = (batch_size, 3, options_up["image_size"], options_up["image_size"])
|
219 |
-
up_samples = diffusion_up.ddim_sample_loop(
|
220 |
-
model_up,
|
221 |
-
up_shape,
|
222 |
-
noise=th.randn(up_shape, device=device) * upsample_temp,
|
223 |
-
device=device,
|
224 |
-
clip_denoised=True,
|
225 |
-
progress=True,
|
226 |
-
model_kwargs=model_kwargs,
|
227 |
-
cond_fn=None,
|
228 |
-
)[:batch_size]
|
229 |
-
model_up.del_cache()
|
230 |
-
<<<<<<< HEAD
|
231 |
-
|
232 |
-
=======
|
233 |
-
>>>>>>> 8c239b8a9cdaf13e28c145e788b984c129547a37
|
234 |
-
# Show the output
|
235 |
-
image = get_images(up_samples)
|
236 |
-
image = to_base64(image)
|
237 |
-
return {"image": image}
|
238 |
-
<<<<<<< HEAD
|
239 |
-
|
240 |
-
|
241 |
-
=======
|
242 |
-
>>>>>>> 8c239b8a9cdaf13e28c145e788b984c129547a37
|
243 |
-
def to_base64(pil_image):
|
244 |
-
buffered = BytesIO()
|
245 |
-
pil_image.save(buffered, format="JPEG")
|
246 |
-
return base64.b64encode(buffered.getvalue())
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|