Spaces:
Running
Running
File size: 10,772 Bytes
dc1a085 e0f7f4f e731a1a e0f7f4f e731a1a e0f7f4f 2c5182f e0f7f4f 2c5182f e0f7f4f 2c5182f e0f7f4f 2c5182f e0f7f4f e731a1a e0f7f4f e731a1a e0f7f4f e731a1a e0f7f4f e731a1a e0f7f4f 2c5182f e0f7f4f e731a1a e0f7f4f 2c5182f e0f7f4f e731a1a e0f7f4f e731a1a e0f7f4f e731a1a e0f7f4f e731a1a e0f7f4f e731a1a e0f7f4f e731a1a e0f7f4f e731a1a e0f7f4f e731a1a e0f7f4f e731a1a e0f7f4f e731a1a e0f7f4f e731a1a e0f7f4f e731a1a e0f7f4f e731a1a e0f7f4f e731a1a e0f7f4f e731a1a e0f7f4f e731a1a e0f7f4f e731a1a e0f7f4f e731a1a e0f7f4f e731a1a e0f7f4f 7e26484 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 |
import streamlit as st
from predict import run_prediction
from io import StringIO
import PyPDF4
import docx2txt
import pdfplumber
import difflib
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.metrics.pairwise import cosine_similarity
from sentence_transformers import SentenceTransformer, util
# ========== CONFIGURATION ==========
st.set_page_config(
layout="wide",
page_title="Contract Analysis Suite",
page_icon="π"
)
# Initialize session state variables if they don't exist
if 'comparison_results' not in st.session_state:
st.session_state.comparison_results = None
if 'analysis_results' not in st.session_state:
st.session_state.analysis_results = None
# ========== CACHED DATA LOADING ==========
@st.cache_data(show_spinner=False)
def load_questions():
try:
with open('data/questions.txt') as f:
return [q.strip() for q in f.readlines() if q.strip()]
except Exception as e:
st.error(f"Error loading questions: {str(e)}")
return []
@st.cache_data(show_spinner=False)
def load_questions_short():
try:
with open('data/questions_short.txt') as f:
return [q.strip() for q in f.readlines() if q.strip()]
except Exception as e:
st.error(f"Error loading short questions: {str(e)}")
return []
# ========== UTILITY FUNCTIONS ==========
def extract_text_from_pdf(uploaded_file):
try:
with pdfplumber.open(uploaded_file) as pdf:
full_text = ""
for page in pdf.pages:
try:
text = page.extract_text_formatted()
except AttributeError:
text = page.extract_text()
if text:
full_text += text + "\n\n"
else:
full_text += page.extract_text() + "\n\n"
return full_text if full_text.strip() else ""
except Exception as e:
st.error(f"PDF extraction error: {str(e)}")
return ""
def highlight_differences_words(text1, text2):
differ = difflib.Differ()
diff = list(differ.compare(text1.split(), text2.split()))
highlighted_text1 = ""
highlighted_text2 = ""
for i, word in enumerate(diff):
if word.startswith("- "):
removed_word = word[2:]
highlighted_text1 += f'<span style="background-color:#ffcccc; display: inline-block;">{removed_word}</span>'
if i + 1 < len(diff) and diff[i + 1].startswith("+ "):
added_word = diff[i + 1][2:]
highlighted_text2 += f'<span style="background-color:#ffffcc; display: inline-block;">{added_word}</span>'
diff[i + 1] = ' '
else:
highlighted_text2 += " "
elif word.startswith("+ "):
added_word = word[2:]
highlighted_text2 += f'<span style="background-color:#ccffcc; display: inline-block;">{added_word}</span>'
if i - 1 >= 0 and diff[i - 1].startswith("- "):
highlighted_text1 += f'<span style="background-color:#ffffcc; display: inline-block;">{diff[i-1][2:]}</span>'
diff[i-1] = ' '
else:
highlighted_text1 += " "
elif word.startswith(" "):
highlighted_text1 += word[2:] + " "
highlighted_text2 += word[2:] + " "
return highlighted_text1, highlighted_text2
def calculate_similarity(text1, text2):
if not text1.strip() or not text2.strip():
return 0.0
try:
model = SentenceTransformer('all-MiniLM-L6-v2')
embeddings = model.encode([text1, text2], convert_to_tensor=True)
similarity = util.cos_sim(embeddings[0], embeddings[1])
return float(similarity.item()) * 100
except Exception as e:
st.error(f"Similarity calculation error: {e}")
return 0.0
def load_contract(file):
if file is None:
return ""
ext = file.name.split('.')[-1].lower()
try:
if ext == 'txt':
content = StringIO(file.getvalue().decode("utf-8")).read()
elif ext == 'pdf':
content = extract_text_from_pdf(file)
if not content:
pdfReader = PyPDF4.PdfFileReader(file)
full_text = ""
for page in pdfReader.pages:
text = page.extractText()
if text:
full_text += text + "\n\n"
content = full_text
elif ext == 'docx':
content = docx2txt.process(file)
else:
st.warning('Unsupported file type')
return ""
return content.strip() if content else ""
except Exception as e:
st.error(f"Error loading {ext.upper()} file: {str(e)}")
return ""
# ========== MAIN APP ==========
def main():
questions = load_questions()
questions_short = load_questions_short()
if not questions or not questions_short or len(questions) != len(questions_short):
st.error("Failed to load questions or questions mismatch. Please check data files.")
return
st.title("π Contract Analysis Suite")
st.markdown("""
Compare documents and analyze legal clauses using AI-powered question answering.
""")
st.header("1. Upload Documents")
col1, col2 = st.columns(2)
with col1:
uploaded_file1 = st.file_uploader("Upload First Document", type=["txt", "pdf", "docx"], key="file1")
contract_text1 = load_contract(uploaded_file1) if uploaded_file1 else ""
doc1_display = st.empty()
with col2:
uploaded_file2 = st.file_uploader("Upload Second Document", type=["txt", "pdf", "docx"], key="file2")
contract_text2 = load_contract(uploaded_file2) if uploaded_file2 else ""
doc2_display = st.empty()
if uploaded_file1:
doc1_display.text_area("Document 1 Content", value=contract_text1, height=400, key="area1")
if uploaded_file2:
doc2_display.text_area("Document 2 Content", value=contract_text2, height=400, key="area2")
if not (uploaded_file1 and uploaded_file2):
st.warning("Please upload both documents to proceed")
return
st.header("2. Document Comparison")
with st.expander("Show Document Differences", expanded=True):
if st.button("Compare Documents"):
with st.spinner("Analyzing documents..."):
if not contract_text1.strip() or not contract_text2.strip():
st.error("One or both documents appear to be empty or couldn't be read properly")
return
similarity_score = calculate_similarity(contract_text1, contract_text2)
highlighted_diff1, highlighted_diff2 = highlight_differences_words(contract_text1, contract_text2)
st.session_state.comparison_results = {
'similarity_score': similarity_score,
'highlighted_diff1': highlighted_diff1,
'highlighted_diff2': highlighted_diff2,
}
if st.session_state.comparison_results:
st.metric("Document Similarity Score", f"{st.session_state.comparison_results['similarity_score']:.2f}%")
if st.session_state.comparison_results['similarity_score'] < 50:
st.warning("Significant differences detected")
st.markdown("**Visual Difference Highlighting:**")
col1, col2 = st.columns(2)
with col1:
st.markdown("### Original Document")
st.markdown(f'<div style="border:1px solid #ccc; padding:10px; white-space: pre-wrap; font-family: monospace; font-size: 0.9em; max-height: 500px; overflow-y: auto;">{st.session_state.comparison_results["highlighted_diff1"]}</div>', unsafe_allow_html=True)
with col2:
st.markdown("### Modified Document")
st.markdown(f'<div style="border:1px solid #ccc; padding:10px; white-space: pre-wrap; font-family: monospace; font-size: 0.9em; max-height: 500px; overflow-y: auto;">{st.session_state.comparison_results["highlighted_diff2"]}</div>', unsafe_allow_html=True)
st.header("3. Clause Analysis")
try:
question_selected = st.selectbox('Select a legal question to analyze:', questions_short, index=0, key="question_select")
question_idx = questions_short.index(question_selected)
selected_question = questions[question_idx]
except Exception as e:
st.error(f"Error selecting question: {str(e)}")
return
if st.button("Analyze Both Documents"):
if not (contract_text1.strip() and contract_text2.strip()):
st.error("Please ensure both documents have readable content")
return
col1, col2 = st.columns(2)
with col1:
st.subheader("First Document Analysis")
with st.spinner('Processing first document...'):
try:
predictions1 = run_prediction([selected_question], contract_text1, 'marshmellow77/roberta-base-cuad', n_best_size=5)
answer1 = predictions1.get('0', 'No answer found')
st.session_state.analysis_results = st.session_state.analysis_results or {}
st.session_state.analysis_results['doc1'] = answer1 if answer1 else "No relevant clause found"
except Exception as e:
st.session_state.analysis_results = st.session_state.analysis_results or {}
st.session_state.analysis_results['doc1'] = f"Analysis failed: {str(e)}"
with col2:
st.subheader("Second Document Analysis")
with st.spinner('Processing second document...'):
try:
predictions2 = run_prediction([selected_question], contract_text2, 'marshmellow77/roberta-base-cuad', n_best_size=5)
answer2 = predictions2.get('0', 'No answer found')
st.session_state.analysis_results = st.session_state.analysis_results or {}
st.session_state.analysis_results['doc2'] = answer2 if answer2 else "No relevant clause found"
except Exception as e:
st.session_state.analysis_results = st.session_state.analysis_results or {}
st.session_state.analysis_results['doc2'] = f"Analysis failed: {str(e)}"
if st.session_state.analysis_results:
col1, col2 = st.columns(2)
with col1:
st.success(st.session_state.analysis_results.get('doc1', 'No analysis performed yet'))
with col2:
st.success(st.session_state.analysis_results.get('doc2', 'No analysis performed yet'))
if __name__ == "__main__":
main() |