File size: 10,772 Bytes
dc1a085
e0f7f4f
 
 
 
 
 
 
 
e731a1a
e0f7f4f
 
 
 
 
e731a1a
e0f7f4f
 
 
 
2c5182f
e0f7f4f
 
2c5182f
e0f7f4f
 
 
 
 
 
 
 
 
2c5182f
e0f7f4f
 
 
 
 
 
 
 
2c5182f
e0f7f4f
 
 
 
 
 
 
e731a1a
e0f7f4f
 
 
e731a1a
e0f7f4f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e731a1a
 
e0f7f4f
 
 
 
 
 
e731a1a
e0f7f4f
 
 
 
 
 
2c5182f
e0f7f4f
e731a1a
e0f7f4f
 
 
2c5182f
e0f7f4f
e731a1a
 
 
 
 
 
 
 
e0f7f4f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e731a1a
e0f7f4f
 
 
 
 
 
 
 
e731a1a
e0f7f4f
e731a1a
e0f7f4f
 
e731a1a
e0f7f4f
e731a1a
e0f7f4f
 
e731a1a
e0f7f4f
e731a1a
e0f7f4f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e731a1a
e0f7f4f
e731a1a
e0f7f4f
 
 
 
e731a1a
 
e0f7f4f
e731a1a
 
e0f7f4f
e731a1a
 
e0f7f4f
 
 
e731a1a
e0f7f4f
 
 
 
 
 
 
 
 
 
 
e731a1a
e0f7f4f
e731a1a
e0f7f4f
 
 
 
 
 
 
 
 
 
 
e731a1a
e0f7f4f
 
 
 
 
 
 
 
 
 
 
 
e731a1a
 
e0f7f4f
 
e731a1a
e0f7f4f
 
 
7e26484
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
import streamlit as st
from predict import run_prediction
from io import StringIO
import PyPDF4
import docx2txt
import pdfplumber
import difflib
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.metrics.pairwise import cosine_similarity
from sentence_transformers import SentenceTransformer, util

# ========== CONFIGURATION ==========
st.set_page_config(
    layout="wide",
    page_title="Contract Analysis Suite",
    page_icon="πŸ“"
)

# Initialize session state variables if they don't exist
if 'comparison_results' not in st.session_state:
    st.session_state.comparison_results = None
if 'analysis_results' not in st.session_state:
    st.session_state.analysis_results = None

# ========== CACHED DATA LOADING ==========
@st.cache_data(show_spinner=False)
def load_questions():
    try:
        with open('data/questions.txt') as f:
            return [q.strip() for q in f.readlines() if q.strip()]
    except Exception as e:
        st.error(f"Error loading questions: {str(e)}")
        return []

@st.cache_data(show_spinner=False)
def load_questions_short():
    try:
        with open('data/questions_short.txt') as f:
            return [q.strip() for q in f.readlines() if q.strip()]
    except Exception as e:
        st.error(f"Error loading short questions: {str(e)}")
        return []

# ========== UTILITY FUNCTIONS ==========
def extract_text_from_pdf(uploaded_file):
    try:
        with pdfplumber.open(uploaded_file) as pdf:
            full_text = ""
            for page in pdf.pages:
                try:
                    text = page.extract_text_formatted()
                except AttributeError:
                    text = page.extract_text()
                if text:
                    full_text += text + "\n\n"
                else:
                    full_text += page.extract_text() + "\n\n"
            return full_text if full_text.strip() else ""
    except Exception as e:
        st.error(f"PDF extraction error: {str(e)}")
        return ""

def highlight_differences_words(text1, text2):
    differ = difflib.Differ()
    diff = list(differ.compare(text1.split(), text2.split()))

    highlighted_text1 = ""
    highlighted_text2 = ""

    for i, word in enumerate(diff):
        if word.startswith("- "):
            removed_word = word[2:]
            highlighted_text1 += f'<span style="background-color:#ffcccc; display: inline-block;">{removed_word}</span>'
            if i + 1 < len(diff) and diff[i + 1].startswith("+ "):
                added_word = diff[i + 1][2:]
                highlighted_text2 += f'<span style="background-color:#ffffcc; display: inline-block;">{added_word}</span>'
                diff[i + 1] = '  '
            else:
                highlighted_text2 += " "
        elif word.startswith("+ "):
            added_word = word[2:]
            highlighted_text2 += f'<span style="background-color:#ccffcc; display: inline-block;">{added_word}</span>'
            if i - 1 >= 0 and diff[i - 1].startswith("- "):
                highlighted_text1 += f'<span style="background-color:#ffffcc; display: inline-block;">{diff[i-1][2:]}</span>'
                diff[i-1] = '  '
            else:
                highlighted_text1 += " "
        elif word.startswith("  "):
            highlighted_text1 += word[2:] + " "
            highlighted_text2 += word[2:] + " "

    return highlighted_text1, highlighted_text2

def calculate_similarity(text1, text2):
    if not text1.strip() or not text2.strip():
        return 0.0

    try:
        model = SentenceTransformer('all-MiniLM-L6-v2')
        embeddings = model.encode([text1, text2], convert_to_tensor=True)
        similarity = util.cos_sim(embeddings[0], embeddings[1])
        return float(similarity.item()) * 100
    except Exception as e:
        st.error(f"Similarity calculation error: {e}")
        return 0.0

def load_contract(file):
    if file is None:
        return ""

    ext = file.name.split('.')[-1].lower()
    try:
        if ext == 'txt':
            content = StringIO(file.getvalue().decode("utf-8")).read()
        elif ext == 'pdf':
            content = extract_text_from_pdf(file)
            if not content:
                pdfReader = PyPDF4.PdfFileReader(file)
                full_text = ""
                for page in pdfReader.pages:
                    text = page.extractText()
                    if text:
                        full_text += text + "\n\n"
                content = full_text
        elif ext == 'docx':
            content = docx2txt.process(file)
        else:
            st.warning('Unsupported file type')
            return ""
        return content.strip() if content else ""
    except Exception as e:
        st.error(f"Error loading {ext.upper()} file: {str(e)}")
        return ""

# ========== MAIN APP ==========
def main():
    questions = load_questions()
    questions_short = load_questions_short()

    if not questions or not questions_short or len(questions) != len(questions_short):
        st.error("Failed to load questions or questions mismatch. Please check data files.")
        return

    st.title("πŸ“ Contract Analysis Suite")
    st.markdown("""
    Compare documents and analyze legal clauses using AI-powered question answering.
    """)

    st.header("1. Upload Documents")
    col1, col2 = st.columns(2)

    with col1:
        uploaded_file1 = st.file_uploader("Upload First Document", type=["txt", "pdf", "docx"], key="file1")
        contract_text1 = load_contract(uploaded_file1) if uploaded_file1 else ""
        doc1_display = st.empty()

    with col2:
        uploaded_file2 = st.file_uploader("Upload Second Document", type=["txt", "pdf", "docx"], key="file2")
        contract_text2 = load_contract(uploaded_file2) if uploaded_file2 else ""
        doc2_display = st.empty()

    if uploaded_file1:
        doc1_display.text_area("Document 1 Content", value=contract_text1, height=400, key="area1")
    if uploaded_file2:
        doc2_display.text_area("Document 2 Content", value=contract_text2, height=400, key="area2")

    if not (uploaded_file1 and uploaded_file2):
        st.warning("Please upload both documents to proceed")
        return

    st.header("2. Document Comparison")

    with st.expander("Show Document Differences", expanded=True):
        if st.button("Compare Documents"):
            with st.spinner("Analyzing documents..."):
                if not contract_text1.strip() or not contract_text2.strip():
                    st.error("One or both documents appear to be empty or couldn't be read properly")
                    return

                similarity_score = calculate_similarity(contract_text1, contract_text2)

                highlighted_diff1, highlighted_diff2 = highlight_differences_words(contract_text1, contract_text2)
                st.session_state.comparison_results = {
                    'similarity_score': similarity_score,
                    'highlighted_diff1': highlighted_diff1,
                    'highlighted_diff2': highlighted_diff2,
                }

        if st.session_state.comparison_results:
            st.metric("Document Similarity Score", f"{st.session_state.comparison_results['similarity_score']:.2f}%")

            if st.session_state.comparison_results['similarity_score'] < 50:
                st.warning("Significant differences detected")

            st.markdown("**Visual Difference Highlighting:**")

            col1, col2 = st.columns(2)
            with col1:
                st.markdown("### Original Document")
                st.markdown(f'<div style="border:1px solid #ccc; padding:10px; white-space: pre-wrap; font-family: monospace; font-size: 0.9em; max-height: 500px; overflow-y: auto;">{st.session_state.comparison_results["highlighted_diff1"]}</div>', unsafe_allow_html=True)
            with col2:
                st.markdown("### Modified Document")
                st.markdown(f'<div style="border:1px solid #ccc; padding:10px; white-space: pre-wrap; font-family: monospace; font-size: 0.9em; max-height: 500px; overflow-y: auto;">{st.session_state.comparison_results["highlighted_diff2"]}</div>', unsafe_allow_html=True)

    st.header("3. Clause Analysis")

    try:
        question_selected = st.selectbox('Select a legal question to analyze:', questions_short, index=0, key="question_select")
        question_idx = questions_short.index(question_selected)
        selected_question = questions[question_idx]
    except Exception as e:
        st.error(f"Error selecting question: {str(e)}")
        return

    if st.button("Analyze Both Documents"):
        if not (contract_text1.strip() and contract_text2.strip()):
            st.error("Please ensure both documents have readable content")
            return

        col1, col2 = st.columns(2)

        with col1:
            st.subheader("First Document Analysis")
            with st.spinner('Processing first document...'):
                try:
                    predictions1 = run_prediction([selected_question], contract_text1, 'marshmellow77/roberta-base-cuad', n_best_size=5)
                    answer1 = predictions1.get('0', 'No answer found')
                    st.session_state.analysis_results = st.session_state.analysis_results or {}
                    st.session_state.analysis_results['doc1'] = answer1 if answer1 else "No relevant clause found"
                except Exception as e:
                    st.session_state.analysis_results = st.session_state.analysis_results or {}
                    st.session_state.analysis_results['doc1'] = f"Analysis failed: {str(e)}"

        with col2:
            st.subheader("Second Document Analysis")
            with st.spinner('Processing second document...'):
                try:
                    predictions2 = run_prediction([selected_question], contract_text2, 'marshmellow77/roberta-base-cuad', n_best_size=5)
                    answer2 = predictions2.get('0', 'No answer found')
                    st.session_state.analysis_results = st.session_state.analysis_results or {}
                    st.session_state.analysis_results['doc2'] = answer2 if answer2 else "No relevant clause found"
                except Exception as e:
                    st.session_state.analysis_results = st.session_state.analysis_results or {}
                    st.session_state.analysis_results['doc2'] = f"Analysis failed: {str(e)}"

    if st.session_state.analysis_results:
        col1, col2 = st.columns(2)
        with col1:
            st.success(st.session_state.analysis_results.get('doc1', 'No analysis performed yet'))

        with col2:
            st.success(st.session_state.analysis_results.get('doc2', 'No analysis performed yet'))

if __name__ == "__main__":
    main()