File size: 8,265 Bytes
735619f
a5fd76b
645fd39
a5fd76b
 
472b013
 
 
 
645fd39
21f283c
 
 
040feca
 
21f283c
 
040feca
 
a5fd76b
3260637
 
 
 
 
 
a5fd76b
040feca
a5fd76b
3260637
 
 
 
 
 
a5fd76b
21f283c
84c365e
3260637
 
 
 
 
 
 
84c365e
 
3260637
 
 
84c365e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3260637
 
 
 
 
 
 
 
 
 
84c365e
a5fd76b
3260637
 
 
a5fd76b
3260637
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a5fd76b
040feca
 
 
 
21f283c
3260637
 
 
 
040feca
 
 
 
 
 
 
 
 
21f283c
 
040feca
 
 
21f283c
 
3260637
 
21f283c
 
040feca
 
 
21f283c
 
3260637
 
 
 
 
 
 
 
 
 
 
 
 
040feca
 
 
 
 
 
 
 
 
 
3260637
 
 
 
040feca
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3260637
 
 
 
 
 
 
 
 
 
 
 
 
21f283c
040feca
3260637
 
040feca
 
645fd39
a5fd76b
645fd39
040feca
 
3260637
 
 
 
 
 
a5fd76b
645fd39
040feca
 
3260637
 
 
 
 
 
21f283c
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
import streamlit as st
from predict import run_prediction
from io import StringIO
import PyPDF4
import docx2txt
import pdfplumber
import difflib
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.metrics.pairwise import cosine_similarity

# ========== CONFIGURATION ==========
st.set_page_config(
    layout="wide",
    page_title="Contract Analysis Suite",
    page_icon="πŸ“‘"
)

# ========== CACHED DATA LOADING ==========
@st.cache_data(show_spinner=False)
def load_questions():
    try:
        with open('data/questions.txt') as f:
            return [q.strip() for q in f.readlines() if q.strip()]
    except Exception as e:
        st.error(f"Error loading questions: {str(e)}")
        return []

@st.cache_data(show_spinner=False)
def load_questions_short():
    try:
        with open('data/questions_short.txt') as f:
            return [q.strip() for q in f.readlines() if q.strip()]
    except Exception as e:
        st.error(f"Error loading short questions: {str(e)}")
        return []

# ========== UTILITY FUNCTIONS ==========
def extract_text_from_pdf(uploaded_file):
    try:
        with pdfplumber.open(uploaded_file) as pdf:
            text = "\n".join(page.extract_text() or "" for page in pdf.pages)
            return text if text.strip() else ""
    except Exception as e:
        st.error(f"PDF extraction error: {str(e)}")
        return ""

def highlight_differences(text1, text2):
    if not text1 or not text2:
        return ""
    
    differ = difflib.Differ()
    diff = list(differ.compare(text1.split(), text2.split()))
    
    highlighted_text = ""
    for word in diff:
        if word.startswith("- "):
            highlighted_text += f'<span style="background-color:#ffcccc">{word[2:]}</span> '
        elif word.startswith("+ "):
            highlighted_text += f'<span style="background-color:#ccffcc">{word[2:]}</span> '
        elif word.startswith("? "):
            highlighted_text += f'<span style="background-color:#ffff99">{word[2:]}</span> '
        else:
            highlighted_text += word[2:] + " "
    return highlighted_text

def calculate_similarity(text1, text2):
    if not text1.strip() or not text2.strip():
        return 0.0
    
    try:
        vectorizer = TfidfVectorizer(token_pattern=r'(?u)\b\w+\b')
        tfidf_matrix = vectorizer.fit_transform([text1, text2])
        similarity = cosine_similarity(tfidf_matrix[0:1], tfidf_matrix[1:2])
        return similarity[0][0] * 100
    except ValueError:
        return difflib.SequenceMatcher(None, text1, text2).ratio() * 100

def load_contract(file):
    if file is None:
        return ""
    
    ext = file.name.split('.')[-1].lower()
    try:
        if ext == 'txt':
            content = StringIO(file.getvalue().decode("utf-8")).read()
        elif ext == 'pdf':
            content = extract_text_from_pdf(file)
            if not content:
                # Fallback to PyPDF4
                pdfReader = PyPDF4.PdfFileReader(file)
                content = '\n'.join([pdfReader.getPage(i).extractText() for i in range(pdfReader.numPages)])
        elif ext == 'docx':
            content = docx2txt.process(file)
        else:
            st.warning('Unsupported file type')
            return ""
        return content.strip() if content else ""
    except Exception as e:
        st.error(f"Error loading {ext.upper()} file: {str(e)}")
        return ""

# ========== MAIN APP ==========
def main():
    questions = load_questions()
    questions_short = load_questions_short()

    if not questions or not questions_short or len(questions) != len(questions_short):
        st.error("Failed to load questions or questions mismatch. Please check data files.")
        return

    st.title("πŸ“‘ Contract Analysis Suite")
    st.markdown("""
    Compare documents and analyze legal clauses using AI-powered question answering.
    """)

    # ===== DOCUMENT UPLOAD SECTION =====
    st.header("1. Upload Documents")
    col1, col2 = st.columns(2)
    
    with col1:
        uploaded_file1 = st.file_uploader(
            "Upload First Document", 
            type=["txt", "pdf", "docx"],
            key="file1"
        )
        contract_text1 = load_contract(uploaded_file1) if uploaded_file1 else ""
        doc1_display = st.empty()
        
    with col2:
        uploaded_file2 = st.file_uploader(
            "Upload Second Document", 
            type=["txt", "pdf", "docx"],
            key="file2"
        )
        contract_text2 = load_contract(uploaded_file2) if uploaded_file2 else ""
        doc2_display = st.empty()

    # Update document displays
    if uploaded_file1:
        doc1_display.text_area("Document 1 Content", 
                             value=contract_text1, 
                             height=200, 
                             key="area1")
    if uploaded_file2:
        doc2_display.text_area("Document 2 Content", 
                             value=contract_text2, 
                             height=200, 
                             key="area2")

    if not (uploaded_file1 and uploaded_file2):
        st.warning("Please upload both documents to proceed")
        return

    # ===== DOCUMENT COMPARISON SECTION =====
    st.header("2. Document Comparison")
    with st.expander("Show Document Differences", expanded=True):
        if st.button("Compare Documents"):
            with st.spinner("Analyzing documents..."):
                if not contract_text1.strip() or not contract_text2.strip():
                    st.error("One or both documents appear to be empty or couldn't be read properly")
                    return
                
                similarity_score = calculate_similarity(contract_text1, contract_text2)
                st.metric("Document Similarity Score", f"{similarity_score:.2f}%")
                
                if similarity_score < 50:
                    st.warning("Significant differences detected")
                
                highlighted_diff = highlight_differences(contract_text1, contract_text2)
                st.markdown("**Visual Difference Highlighting:**")
                st.markdown(
                    f'<div style="border:1px solid #ddd; padding:10px; max-height:400px; overflow-y:auto;">{highlighted_diff}</div>',
                    unsafe_allow_html=True
                )

    # ===== QUESTION ANALYSIS SECTION =====
    st.header("3. Clause Analysis")
    
    try:
        question_selected = st.selectbox(
            'Select a legal question to analyze:',
            questions_short,
            index=0,
            key="question_select"
        )
        question_idx = questions_short.index(question_selected)
        selected_question = questions[question_idx]
    except Exception as e:
        st.error(f"Error selecting question: {str(e)}")
        return

    if st.button("Analyze Both Documents"):
        if not (contract_text1.strip() and contract_text2.strip()):
            st.error("Please ensure both documents have readable content")
            return
            
        col1, col2 = st.columns(2)
        
        with col1:
            st.subheader("First Document Analysis")
            with st.spinner('Processing first document...'):
                try:
                    predictions1 = run_prediction([selected_question], contract_text1, 'marshmellow77/roberta-base-cuad', n_best_size=5)
                    answer1 = predictions1.get('0', 'No answer found')
                    st.success(answer1 if answer1 else "No relevant clause found")
                except Exception as e:
                    st.error(f"Analysis failed for Document 1: {str(e)}")
        
        with col2:
            st.subheader("Second Document Analysis")
            with st.spinner('Processing second document...'):
                try:
                    predictions2 = run_prediction([selected_question], contract_text2, 'marshmellow77/roberta-base-cuad', n_best_size=5)
                    answer2 = predictions2.get('0', 'No answer found')
                    st.success(answer2 if answer2 else "No relevant clause found")
                except Exception as e:
                    st.error(f"Analysis failed for Document 2: {str(e)}")

if __name__ == "__main__":
    main()