Spaces:
Sleeping
Sleeping
File size: 8,265 Bytes
735619f a5fd76b 645fd39 a5fd76b 472b013 645fd39 21f283c 040feca 21f283c 040feca a5fd76b 3260637 a5fd76b 040feca a5fd76b 3260637 a5fd76b 21f283c 84c365e 3260637 84c365e 3260637 84c365e 3260637 84c365e a5fd76b 3260637 a5fd76b 3260637 a5fd76b 040feca 21f283c 3260637 040feca 21f283c 040feca 21f283c 3260637 21f283c 040feca 21f283c 3260637 040feca 3260637 040feca 3260637 21f283c 040feca 3260637 040feca 645fd39 a5fd76b 645fd39 040feca 3260637 a5fd76b 645fd39 040feca 3260637 21f283c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 |
import streamlit as st
from predict import run_prediction
from io import StringIO
import PyPDF4
import docx2txt
import pdfplumber
import difflib
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.metrics.pairwise import cosine_similarity
# ========== CONFIGURATION ==========
st.set_page_config(
layout="wide",
page_title="Contract Analysis Suite",
page_icon="π"
)
# ========== CACHED DATA LOADING ==========
@st.cache_data(show_spinner=False)
def load_questions():
try:
with open('data/questions.txt') as f:
return [q.strip() for q in f.readlines() if q.strip()]
except Exception as e:
st.error(f"Error loading questions: {str(e)}")
return []
@st.cache_data(show_spinner=False)
def load_questions_short():
try:
with open('data/questions_short.txt') as f:
return [q.strip() for q in f.readlines() if q.strip()]
except Exception as e:
st.error(f"Error loading short questions: {str(e)}")
return []
# ========== UTILITY FUNCTIONS ==========
def extract_text_from_pdf(uploaded_file):
try:
with pdfplumber.open(uploaded_file) as pdf:
text = "\n".join(page.extract_text() or "" for page in pdf.pages)
return text if text.strip() else ""
except Exception as e:
st.error(f"PDF extraction error: {str(e)}")
return ""
def highlight_differences(text1, text2):
if not text1 or not text2:
return ""
differ = difflib.Differ()
diff = list(differ.compare(text1.split(), text2.split()))
highlighted_text = ""
for word in diff:
if word.startswith("- "):
highlighted_text += f'<span style="background-color:#ffcccc">{word[2:]}</span> '
elif word.startswith("+ "):
highlighted_text += f'<span style="background-color:#ccffcc">{word[2:]}</span> '
elif word.startswith("? "):
highlighted_text += f'<span style="background-color:#ffff99">{word[2:]}</span> '
else:
highlighted_text += word[2:] + " "
return highlighted_text
def calculate_similarity(text1, text2):
if not text1.strip() or not text2.strip():
return 0.0
try:
vectorizer = TfidfVectorizer(token_pattern=r'(?u)\b\w+\b')
tfidf_matrix = vectorizer.fit_transform([text1, text2])
similarity = cosine_similarity(tfidf_matrix[0:1], tfidf_matrix[1:2])
return similarity[0][0] * 100
except ValueError:
return difflib.SequenceMatcher(None, text1, text2).ratio() * 100
def load_contract(file):
if file is None:
return ""
ext = file.name.split('.')[-1].lower()
try:
if ext == 'txt':
content = StringIO(file.getvalue().decode("utf-8")).read()
elif ext == 'pdf':
content = extract_text_from_pdf(file)
if not content:
# Fallback to PyPDF4
pdfReader = PyPDF4.PdfFileReader(file)
content = '\n'.join([pdfReader.getPage(i).extractText() for i in range(pdfReader.numPages)])
elif ext == 'docx':
content = docx2txt.process(file)
else:
st.warning('Unsupported file type')
return ""
return content.strip() if content else ""
except Exception as e:
st.error(f"Error loading {ext.upper()} file: {str(e)}")
return ""
# ========== MAIN APP ==========
def main():
questions = load_questions()
questions_short = load_questions_short()
if not questions or not questions_short or len(questions) != len(questions_short):
st.error("Failed to load questions or questions mismatch. Please check data files.")
return
st.title("π Contract Analysis Suite")
st.markdown("""
Compare documents and analyze legal clauses using AI-powered question answering.
""")
# ===== DOCUMENT UPLOAD SECTION =====
st.header("1. Upload Documents")
col1, col2 = st.columns(2)
with col1:
uploaded_file1 = st.file_uploader(
"Upload First Document",
type=["txt", "pdf", "docx"],
key="file1"
)
contract_text1 = load_contract(uploaded_file1) if uploaded_file1 else ""
doc1_display = st.empty()
with col2:
uploaded_file2 = st.file_uploader(
"Upload Second Document",
type=["txt", "pdf", "docx"],
key="file2"
)
contract_text2 = load_contract(uploaded_file2) if uploaded_file2 else ""
doc2_display = st.empty()
# Update document displays
if uploaded_file1:
doc1_display.text_area("Document 1 Content",
value=contract_text1,
height=200,
key="area1")
if uploaded_file2:
doc2_display.text_area("Document 2 Content",
value=contract_text2,
height=200,
key="area2")
if not (uploaded_file1 and uploaded_file2):
st.warning("Please upload both documents to proceed")
return
# ===== DOCUMENT COMPARISON SECTION =====
st.header("2. Document Comparison")
with st.expander("Show Document Differences", expanded=True):
if st.button("Compare Documents"):
with st.spinner("Analyzing documents..."):
if not contract_text1.strip() or not contract_text2.strip():
st.error("One or both documents appear to be empty or couldn't be read properly")
return
similarity_score = calculate_similarity(contract_text1, contract_text2)
st.metric("Document Similarity Score", f"{similarity_score:.2f}%")
if similarity_score < 50:
st.warning("Significant differences detected")
highlighted_diff = highlight_differences(contract_text1, contract_text2)
st.markdown("**Visual Difference Highlighting:**")
st.markdown(
f'<div style="border:1px solid #ddd; padding:10px; max-height:400px; overflow-y:auto;">{highlighted_diff}</div>',
unsafe_allow_html=True
)
# ===== QUESTION ANALYSIS SECTION =====
st.header("3. Clause Analysis")
try:
question_selected = st.selectbox(
'Select a legal question to analyze:',
questions_short,
index=0,
key="question_select"
)
question_idx = questions_short.index(question_selected)
selected_question = questions[question_idx]
except Exception as e:
st.error(f"Error selecting question: {str(e)}")
return
if st.button("Analyze Both Documents"):
if not (contract_text1.strip() and contract_text2.strip()):
st.error("Please ensure both documents have readable content")
return
col1, col2 = st.columns(2)
with col1:
st.subheader("First Document Analysis")
with st.spinner('Processing first document...'):
try:
predictions1 = run_prediction([selected_question], contract_text1, 'marshmellow77/roberta-base-cuad', n_best_size=5)
answer1 = predictions1.get('0', 'No answer found')
st.success(answer1 if answer1 else "No relevant clause found")
except Exception as e:
st.error(f"Analysis failed for Document 1: {str(e)}")
with col2:
st.subheader("Second Document Analysis")
with st.spinner('Processing second document...'):
try:
predictions2 = run_prediction([selected_question], contract_text2, 'marshmellow77/roberta-base-cuad', n_best_size=5)
answer2 = predictions2.get('0', 'No answer found')
st.success(answer2 if answer2 else "No relevant clause found")
except Exception as e:
st.error(f"Analysis failed for Document 2: {str(e)}")
if __name__ == "__main__":
main() |