Spaces:
Sleeping
Sleeping
import gradio as gr | |
from transformers import MBartForConditionalGeneration, MBart50TokenizerFast | |
# Cargar el modelo y el tokenizador | |
model = MBartForConditionalGeneration.from_pretrained("eslamxm/MBART-finetuned-Spanish") | |
tokenizer = MBart50TokenizerFast.from_pretrained("eslamxm/MBART-finetuned-Spanish") | |
# Función para generar el resumen | |
def resumir_texto(texto): | |
inputs = tokenizer(texto, return_tensors="pt", max_length=1024, truncation=True) | |
resumen_ids = model.generate( | |
inputs["input_ids"], | |
max_length=150, | |
min_length=40, | |
length_penalty=2.0, | |
num_beams=4, | |
early_stopping=True | |
) | |
resumen = tokenizer.decode(resumen_ids[0], skip_special_tokens=True) | |
return resumen | |
# Crear la interfaz con Gradio | |
with gr.Blocks() as demo: | |
gr.Markdown("## 📝 Resumen de Textos en Español") | |
gr.Markdown("Introduce un texto en español y obtén un resumen generado por el modelo MBART.") | |
with gr.Row(): | |
with gr.Column(): | |
entrada = gr.Textbox( | |
label="Texto de entrada", | |
placeholder="Escribe o pega aquí el texto que deseas resumir...", | |
lines=10 | |
) | |
boton = gr.Button("Generar Resumen") | |
with gr.Column(): | |
salida = gr.Textbox( | |
label="Resumen generado", | |
placeholder="El resumen aparecerá aquí...", | |
lines=10 | |
) | |
boton.click(fn=resumir_texto, inputs=entrada, outputs=salida) | |
demo.launch() | |