Spaces:
Running
Running
import gradio as gr | |
from transformers import ViTFeatureExtractor, ViTForImageClassification | |
from PIL import Image | |
import torch | |
# Cargar el modelo y el extractor de características | |
model = ViTForImageClassification.from_pretrained("akahana/vit-base-cats-vs-dogs") | |
feature_extractor = ViTFeatureExtractor.from_pretrained("google/vit-base-patch16-224-in21k") | |
# Función de predicción | |
def classify_image(image): | |
inputs = feature_extractor(images=image, return_tensors="pt") | |
outputs = model(**inputs) | |
logits = outputs.logits | |
predicted_class_idx = logits.argmax(-1).item() | |
predicted_class = model.config.id2label[predicted_class_idx] | |
return predicted_class | |
# Crear la interfaz de Gradio | |
interface = gr.Interface(fn=classify_image, inputs=gr.Image(type="pil"), outputs="text") | |
interface.launch() | |