Spaces:
Running
on
Zero
Running
on
Zero
File size: 12,470 Bytes
0d862c9 beb1ab3 debd89e 0d862c9 a762f5a 0d862c9 a762f5a 0d862c9 53d8b6c debd89e 0d862c9 5f1729b 0f36c12 b2e977e 0f36c12 0d862c9 a762f5a 0d862c9 36a1678 0d862c9 4947e5d debd89e 0d862c9 4947e5d debd89e 0d862c9 36a1678 0d862c9 36a1678 0d862c9 36a1678 0d862c9 debd89e f57efa9 0d862c9 f57efa9 0d862c9 f57efa9 0d862c9 f57efa9 0d862c9 4947e5d d5c54d1 1abd69d d5c54d1 4947e5d 744c110 cdb5967 4947e5d 0d862c9 4947e5d 0d862c9 3dfd9b3 0d862c9 f57efa9 0d862c9 beb1ab3 f57efa9 0d862c9 f57efa9 0d862c9 f57efa9 0d862c9 beb1ab3 0d862c9 beb1ab3 0d862c9 7da7f34 0d862c9 beb1ab3 4947e5d 1abd69d 4947e5d beb1ab3 0d862c9 f57efa9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 |
import tempfile
from pathlib import Path
import gradio as gr
import spaces
from llama_cookbook.inference.model_utils import load_model as load_model_llamarecipes
from llama_cookbook.inference.model_utils import load_peft_model
from transformers import AutoTokenizer
from src.data.single_video import SingleVideo
from src.data.utils_asr import PromptASR
from src.models.llama_inference import inference
from src.test.vidchapters import get_chapters
from tools.download.models import download_base_model, download_model
# Set up proxies
# from urllib.request import getproxies
# proxies = getproxies()
# os.environ["HTTP_PROXY"] = os.environ["http_proxy"] = proxies["http"]
# os.environ["HTTPS_PROXY"] = os.environ["https_proxy"] = proxies["https"]
# os.environ["NO_PROXY"] = os.environ["no_proxy"] = "localhost, 127.0.0.1/8, ::1"
# Global variables to store loaded models
base_model = None
tokenizer = None
current_peft_model = None
inference_model = None
LLAMA_CKPT_PATH = "meta-llama/Meta-Llama-3.1-8B-Instruct"
@spaces.GPU
def load_base_model():
"""Load the base Llama model and tokenizer once at startup."""
global base_model, tokenizer
if base_model is None:
print(f"Loading base model: {LLAMA_CKPT_PATH}")
# base_model = load_model_llamarecipes(
# model_name=LLAMA_CKPT_PATH,
# device_map="auto",
# quantization=None,
# use_fast_kernels=True,
# )
# tokenizer = AutoTokenizer.from_pretrained(LLAMA_CKPT_PATH)
# Try to get the local path using the download function
model_path = download_base_model("lucas-ventura/chapter-llama", local_dir=".")
model_path = f"/home/user/app/{LLAMA_CKPT_PATH}"
print(f"Model path: {model_path}")
base_model = load_model_llamarecipes(
model_name=model_path,
device_map="auto",
quantization=None,
use_fast_kernels=True,
)
tokenizer = AutoTokenizer.from_pretrained(model_path)
base_model.eval()
tokenizer.pad_token = tokenizer.eos_token
print("Base model loaded successfully")
@spaces.GPU
class FastLlamaInference:
def __init__(
self,
model,
add_special_tokens: bool = True,
temperature: float = 1.0,
max_new_tokens: int = 1024,
top_p: float = 1.0,
top_k: int = 50,
use_cache: bool = True,
max_padding_length: int = None,
do_sample: bool = False,
min_length: int = None,
repetition_penalty: float = 1.0,
length_penalty: int = 1,
max_prompt_tokens: int = 35_000,
):
self.model = model
self.tokenizer = tokenizer
self.add_special_tokens = add_special_tokens
self.temperature = temperature
self.max_new_tokens = max_new_tokens
self.top_p = top_p
self.top_k = top_k
self.use_cache = use_cache
self.max_padding_length = max_padding_length
self.do_sample = do_sample
self.min_length = min_length
self.repetition_penalty = repetition_penalty
self.length_penalty = length_penalty
self.max_prompt_tokens = max_prompt_tokens
def __call__(self, prompt: str, **kwargs):
# Create a dict of default parameters from instance attributes
params = {
"model": self.model,
"tokenizer": self.tokenizer,
"prompt": prompt,
"add_special_tokens": self.add_special_tokens,
"temperature": self.temperature,
"max_new_tokens": self.max_new_tokens,
"top_p": self.top_p,
"top_k": self.top_k,
"use_cache": self.use_cache,
"max_padding_length": self.max_padding_length,
"do_sample": self.do_sample,
"min_length": self.min_length,
"repetition_penalty": self.repetition_penalty,
"length_penalty": self.length_penalty,
"max_prompt_tokens": self.max_prompt_tokens,
}
# Update with any overrides passed in kwargs
params.update(kwargs)
return inference(**params)
@spaces.GPU
def load_peft(model_name: str = "asr-10k"):
"""Load or switch PEFT model while reusing the base model."""
global base_model, current_peft_model, inference_model
# First make sure the base model is loaded
if base_model is None:
load_base_model()
# Only load a new PEFT model if it's different from the current one
if current_peft_model != model_name:
print(f"Loading PEFT model: {model_name}")
model_path = download_model(model_name)
if not Path(model_path).exists():
print(f"PEFT model does not exist at {model_path}")
return False
# Apply the PEFT model to the base model
peft_model = load_peft_model(base_model, model_path)
peft_model.eval()
# Create the inference wrapper
inference_model = FastLlamaInference(model=peft_model)
current_peft_model = model_name
print(f"PEFT model {model_name} loaded successfully")
return True
# Model already loaded
return True
@spaces.GPU
def process_video(video_file, model_name: str = "asr-10k", do_sample: bool = False):
"""Process a video file and generate chapters."""
progress = gr.Progress()
progress(0, desc="Starting...")
# Check if we have a valid input
if video_file is None:
return "Please upload a video file."
# Load the PEFT model
progress(0.1, desc=f"Loading LoRA parameters from {model_name}...")
if not load_peft(model_name):
return "Failed to load model. Please try again."
# Create a temporary directory to save the uploaded video
with tempfile.TemporaryDirectory() as temp_dir:
temp_video_path = Path(temp_dir) / "temp_video.mp4"
# Using uploaded file
progress(0.2, desc="Processing uploaded video...")
with open(temp_video_path, "wb") as f:
f.write(video_file)
# Process the video
progress(0.3, desc="Extracting ASR transcript...")
single_video = SingleVideo(temp_video_path)
progress(0.4, desc="Creating prompt...")
prompt = PromptASR(chapters=single_video)
vid_id = single_video.video_ids[0]
progress(0.5, desc="Creating prompt...")
prompt = prompt.get_prompt_test(vid_id)
transcript = single_video.get_asr(vid_id)
prompt = prompt + transcript
progress(0.6, desc="Generating chapters with Chapter-Llama...")
_, chapters = get_chapters(
inference_model,
prompt,
max_new_tokens=1024,
do_sample=do_sample,
vid_id=vid_id,
)
# Format the output
progress(0.9, desc="Formatting results...")
output = ""
for timestamp, text in chapters.items():
output += f"{timestamp}: {text}\n"
progress(1.0, desc="Complete!")
return output
# CSS for the submit button color
head = """
<head>
<title>Chapter-Llama - VidChapters</title>
<link rel="icon" type="image/x-icon" href="./favicon.ico">
</head>
"""
title_markdown = """
<div style="display: flex; justify-content: space-between; align-items: center; background: linear-gradient(90deg, rgba(72,219,251,0.1), rgba(29,209,161,0.1)); border-radius: 20px; box-shadow: 0 4px 6px rgba(0,0,0,0.1); padding: 20px; margin-bottom: 20px;">
<div style="display: flex; align-items: center;">
<a href="https://github.com/lucas-ventura/chapter-llama" style="margin-right: 20px; text-decoration: none; display: flex; align-items: center;">
<img src="https://imagine.enpc.fr/~lucas.ventura/chapter-llama/images/chapter-llama.png" alt="Chapter-Llama" style="max-width: 100px; height: auto; border-radius: 15px; box-shadow: 0 2px 4px rgba(0,0,0,0.1);">
</a>
<div>
<h1 style="margin: 0; background: linear-gradient(90deg, #8F68C3, #477EF4); -webkit-background-clip: text; -webkit-text-fill-color: transparent; font-size: 2.5em; font-weight: 700;">Chapter-Llama</h1>
<h2 style="margin: 10px 0; background: linear-gradient(90deg, #8F68C3, #477EF4); -webkit-background-clip: text; -webkit-text-fill-color: transparent; font-size: 1.8em; font-weight: 600;">Efficient Chaptering in Hour-Long Videos with LLMs</h2>
<div style="display: flex; gap: 15px; margin-top: 10px;">
<a href="https://github.com/lucas-ventura/chapter-llama" style="text-decoration: none; color: #8F68C3; font-weight: 500; transition: color 0.3s;">GitHub</a> |
<a href="https://imagine.enpc.fr/~lucas.ventura/chapter-llama/" style="text-decoration: none; color: #8F68C3; font-weight: 500; transition: color 0.3s;">Project Page</a> |
<a href="https://arxiv.org/abs/2504.00072" style="text-decoration: none; color: #8F68C3; font-weight: 500; transition: color 0.3s;">Paper</a>
</div>
</div>
</div>
<div style="text-align: right; margin-left: 20px;">
<h2 style="margin: 10px 0; color: #24467C; font-weight: 700; font-size: 2.5em;">CVPR 2025</h2>
</div>
</div>
"""
note_html = """
<div style="background-color: #f9f9f9; border-left: 5px solid #48dbfb; padding: 20px; margin-top: 20px; border-radius: 10px; box-shadow: 0 2px 4px rgba(0, 0, 0, 0.1);">
<p style="font-size: 1.1em; color: #ff9933; margin-bottom: 10px; font-weight: bold;">Note: If you encounter any errors with this demo, you can run the code locally using the following commands:</p>
<pre style="background-color: #f1f1f1; padding: 15px; border-radius: 5px; overflow-x: auto;">
# Clone the repository
git clone https://github.com/lucas-ventura/chapter-llama.git
cd chapter-llama
# Install demo dependencies
python -m pip install -e ".[demo]"
# Launch the demo
python demo.py</pre>
<p style="font-size: 1.1em; color: #555; margin-bottom: 10px;">If you find any issues, please report them on our <a href="https://github.com/lucas-ventura/chapter-llama/issues" style="color: #8F68C3; text-decoration: none;">GitHub repository</a>.</p>
</div>
"""
# Citation from demo_sample.py
bibtext = """
### Citation
```
@InProceedings{ventura25chapter,
title = {{Chapter-Llama}: Efficient Chaptering in Hour-Long Videos with {LLM}s},
author = {Lucas Ventura and Antoine Yang and Cordelia Schmid and G{\"u}l Varol},
booktitle = {CVPR},
year = {2025}
}
```
"""
# Create the Gradio interface
with gr.Blocks(title="Chapter-Llama", head=head) as demo:
gr.HTML(title_markdown)
gr.Markdown(
"""
This demo is currently using only the audio data (ASR), without frame information.
We will add audio+captions functionality in the near future, which will improve
chapter generation by incorporating visual content.
"""
)
with gr.Row():
with gr.Column():
video_input = gr.File(
label="Upload Video or Audio File",
file_types=["video", "audio"],
type="binary",
)
model_dropdown = gr.Dropdown(
choices=["asr-10k", "asr-1k"],
value="asr-10k",
label="Select Model",
)
do_sample = gr.Checkbox(
label="Use random sampling", value=False, interactive=True
)
submit_btn = gr.Button("Generate Chapters")
with gr.Column():
status_area = gr.Markdown("**Status:** Ready to process video")
output_text = gr.Textbox(
label="Generated Chapters", lines=10, interactive=False
)
def update_status_and_process(video_file, model_name, do_sample):
if video_file is None:
return (
"**Status:** No video uploaded",
"Please upload a video file.",
)
else:
return "**Status:** Processing video...", process_video(
video_file, model_name, do_sample
)
# Load the base model at startup
load_base_model()
submit_btn.click(
fn=update_status_and_process,
inputs=[video_input, model_dropdown, do_sample],
outputs=[status_area, output_text],
)
gr.Markdown(bibtext)
gr.HTML(note_html)
if __name__ == "__main__":
# Launch the Gradio app
demo.launch()
|