Spaces:
Running
on
Zero
Running
on
Zero
fix save and reload model state (#49)
Browse filesCo-authored-by: Srini Iyer <[email protected]>
- bytelatent/model/local_models.py +14 -10
bytelatent/model/local_models.py
CHANGED
@@ -74,12 +74,10 @@ class LocalModelBase(nn.Module):
|
|
74 |
|
75 |
self.boe_id = BOE_ID
|
76 |
|
77 |
-
self.norm = RMSNorm(args.dim, eps=args.norm_eps)
|
78 |
self.layers = nn.ModuleList(
|
79 |
[TransformerBlock(args) for _ in range(args.n_layers)]
|
80 |
)
|
81 |
|
82 |
-
self.tok_embeddings = nn.Embedding(self.vocab_size, args.dim)
|
83 |
if not self.use_rope:
|
84 |
self.pos_embeddings = nn.Embedding(args.max_length, args.dim)
|
85 |
else:
|
@@ -131,16 +129,18 @@ class LocalModelBase(nn.Module):
|
|
131 |
|
132 |
def init_weights(self, init_std=None):
|
133 |
self.rope.reset_parameters()
|
134 |
-
self
|
|
|
135 |
|
136 |
init_std = init_std or (self.dim ** (-0.5))
|
137 |
-
|
138 |
-
|
139 |
-
|
140 |
-
|
141 |
-
|
142 |
-
|
143 |
-
|
|
|
144 |
if self.pos_embeddings is not None:
|
145 |
nn.init.trunc_normal_(
|
146 |
self.pos_embeddings.weight,
|
@@ -212,6 +212,8 @@ class LocalEncoder(LocalModelBase):
|
|
212 |
self.cross_attn_init_by_pooling = args.cross_attn_init_by_pooling
|
213 |
self.cross_attn_nheads = args.cross_attn_nheads
|
214 |
|
|
|
|
|
215 |
if self.cross_attn_encoder:
|
216 |
self.cross_attn_layers = torch.nn.ModuleList()
|
217 |
layers_to_add = args.n_layers if self.cross_attn_all_layers_encoder else 1
|
@@ -314,6 +316,8 @@ class LocalDecoder(LocalModelBase):
|
|
314 |
self.cross_attn_init_by_pooling = args.cross_attn_init_by_pooling
|
315 |
self.cross_attn_nheads = args.cross_attn_nheads
|
316 |
|
|
|
|
|
317 |
if self.cross_attn_decoder:
|
318 |
self.cross_attn_layers = torch.nn.ModuleList()
|
319 |
layers_to_add = args.n_layers if self.cross_attn_all_layers_decoder else 1
|
|
|
74 |
|
75 |
self.boe_id = BOE_ID
|
76 |
|
|
|
77 |
self.layers = nn.ModuleList(
|
78 |
[TransformerBlock(args) for _ in range(args.n_layers)]
|
79 |
)
|
80 |
|
|
|
81 |
if not self.use_rope:
|
82 |
self.pos_embeddings = nn.Embedding(args.max_length, args.dim)
|
83 |
else:
|
|
|
129 |
|
130 |
def init_weights(self, init_std=None):
|
131 |
self.rope.reset_parameters()
|
132 |
+
if hasattr(self, "norm"):
|
133 |
+
self.norm.reset_parameters()
|
134 |
|
135 |
init_std = init_std or (self.dim ** (-0.5))
|
136 |
+
if hasattr(self, "tok_embeddings"):
|
137 |
+
nn.init.trunc_normal_(
|
138 |
+
self.tok_embeddings.weight,
|
139 |
+
mean=0.0,
|
140 |
+
std=init_std,
|
141 |
+
a=-3 * init_std,
|
142 |
+
b=3 * init_std,
|
143 |
+
)
|
144 |
if self.pos_embeddings is not None:
|
145 |
nn.init.trunc_normal_(
|
146 |
self.pos_embeddings.weight,
|
|
|
212 |
self.cross_attn_init_by_pooling = args.cross_attn_init_by_pooling
|
213 |
self.cross_attn_nheads = args.cross_attn_nheads
|
214 |
|
215 |
+
self.tok_embeddings = nn.Embedding(self.vocab_size, args.dim)
|
216 |
+
|
217 |
if self.cross_attn_encoder:
|
218 |
self.cross_attn_layers = torch.nn.ModuleList()
|
219 |
layers_to_add = args.n_layers if self.cross_attn_all_layers_encoder else 1
|
|
|
316 |
self.cross_attn_init_by_pooling = args.cross_attn_init_by_pooling
|
317 |
self.cross_attn_nheads = args.cross_attn_nheads
|
318 |
|
319 |
+
self.norm = RMSNorm(args.dim, eps=args.norm_eps)
|
320 |
+
|
321 |
if self.cross_attn_decoder:
|
322 |
self.cross_attn_layers = torch.nn.ModuleList()
|
323 |
layers_to_add = args.n_layers if self.cross_attn_all_layers_decoder else 1
|