lucalp's picture
Fixing proper UTF-8 representation
8eea094
from collections import defaultdict
import spaces
import math
import os
import gradio as gr
import torch
import itertools # For color cycling
import tiktoken # For GPT-4 tokenizer
from transformers import AutoTokenizer, HfArgumentParser # For Llama3 tokenizer & args potentially
import traceback # For detailed error logging
import logging # For better logging practices
from typing import Optional, Tuple, List, Dict, Any
import matplotlib.figure # For type hinting
import matplotlib.pyplot as plt
# --- Configuration ---
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
class Config:
# Visualization
VIZ_COLORS: List[str] = [
"#a6cee3", "#1f78b4", "#b2df8a", "#33a02c", "#fb9a99", "#e31a1c",
"#fdbf6f", "#ff7f00", "#cab2d6", "#6a3d9a", "#ffff99", "#b15928"
]
MAX_EXPECTED_SEGMENTS: int = 1 # Max segments for color map generation
# Model/Tokenizer Names
LLAMA3_MODEL_NAME: str = "meta-llama/Meta-Llama-3-8B" # Or choose another variant like Instruct
TIKTOKEN_ENCODING_NAME: str = "cl100k_base"
BLT_MODEL_NAME: str = "blt-1b" # Default Bytelatent model
# Bytelatent Specific
BLT_WEIGHTS_DIR: str = "hf-weights"
BLT_MAX_BYTES_FOR_DEMO: int = 512
# Gradio
DEFAULT_PROMPT: str = "Daenerys Targaryen is in Game of Thrones, a fantasy epic by George R.R. Martin."
GRADIO_THEME = gr.themes.Origin()
GRADIO_TITLE: str = "BLT's Entropy-based Patcher vs. Tokenizer Visualisation"
GRADIO_DESC: str = (
"Enter text to visualize its segmentation according to different methods:\n"
f"1. **Byte Latent Transformer (BLT):** Entropy-based patching plot and patched text (using `blt_main_entropy_100m_512w`).\n"
f"2. **Tiktoken (GPT-4):** Text segmented by `{TIKTOKEN_ENCODING_NAME}` tokens.\n"
f"3. **Llama 3:** Text segmented by the `{LLAMA3_MODEL_NAME}` tokenizer."
)
# --- Bytelatent Processor ---
# Attempt to import Bytelatent libraries
try:
from bytelatent.data.file_util import get_fs
from bytelatent.generate_patcher import patcher_nocache
from bytelatent.tokenizers.blt_tokenizer import BltTokenizer
from bytelatent.plotting.entropy_figure_via_matplot_lib import plot_entropies
from bytelatent.args import TrainArgs
from download_blt_weights import main as ensure_present # Assuming this downloads weights
_BLT_AVAILABLE = True
logging.info("Bytelatent libraries found.")
except ImportError as e:
logging.warning(f"Bytelatent libraries not found. Bytelatent functionality will be disabled. Error: {e}")
_BLT_AVAILABLE = False
# Define dummy classes/functions if BLT is not available to avoid NameErrors later
class BltTokenizer: pass
class TrainArgs: pass
def patcher_nocache(*args, **kwargs): return None
def plot_entropies(*args, **kwargs): return None
def ensure_present(*args, **kwargs): pass
matplotlib = None # No plotting if BLT isn't there
class BytelatentProcessor:
"""Handles loading and running the Bytelatent entropy model."""
def __init__(self, model_name: str, weights_dir: str):
self.model_name = model_name
self.weights_dir = weights_dir
self.is_available: bool = False
self.tokenizer: Optional[BltTokenizer] = None
self.patcher: Optional[Any] = None # Type depends on bytelatent implementation
self.device: str = "cuda" if torch.cuda.is_available() else "cpu"
if _BLT_AVAILABLE:
try:
# 1. Ensure weights are present
logging.info(f"Ensuring Bytelatent model '{model_name}' weights are present...")
ensure_present([model_name]) # Call the download script
logging.info("Bytelatent model check complete.")
# 2. Load Bytelatent model components
consolidated_path = os.path.join(self.weights_dir, model_name)
train_args_path = os.path.join(consolidated_path, "train_args.json")
entropy_model_dir = os.path.join(consolidated_path, "entropy_model")
if not os.path.exists(train_args_path):
raise FileNotFoundError(f"BLT training args not found at {train_args_path}.")
if not os.path.exists(entropy_model_dir):
raise FileNotFoundError(f"BLT Entropy model directory not found at {entropy_model_dir}.")
fs = get_fs(train_args_path)
train_args = TrainArgs.model_validate_json(fs.read_text(train_args_path))
self.tokenizer = train_args.data.tokenizer_args.build()
assert isinstance(self.tokenizer, BltTokenizer), "Failed to build Bytelatent Tokenizer"
patcher_args = train_args.data.patcher_args.model_copy(deep=True)
patcher_args.realtime_patching = True
patcher_args.patching_device = self.device
patcher_args.device = self.device
patcher_args.entropy_model_checkpoint_dir = entropy_model_dir
self.patcher = patcher_args.build()
self.is_available = True
logging.info(f"Bytelatent processor for '{model_name}' loaded successfully on device '{self.device}'.")
except FileNotFoundError as e:
logging.error(f"Bytelatent setup failed: Required file/directory not found. {e}")
except Exception as e:
logging.error(f"An unexpected error occurred during Bytelatent setup: {e}")
logging.error(traceback.format_exc())
else:
logging.warning("Skipping Bytelatent setup as libraries are unavailable.")
def _create_highlight_data(self, patch_lengths: torch.Tensor, tokens: torch.Tensor) -> Tuple[List[Tuple[str, str]], int]:
"""Generates data for gr.HighlightedText based on bytelatent patches,
formatting each byte's display text as 'char-byte_index'."""
if not self.is_available or self.tokenizer is None:
return [("Bytelatent processing unavailable.", "Error")], 0
if patch_lengths.numel() == 0 and tokens.numel() == 0: # No data at all
return [("No tokens or patches.", "Info")], 0
if tokens.numel() == 0: # No tokens to process
# Count patches even if no tokens, as per original logic for patch_count
actual_patch_count = 0
for length in patch_lengths.tolist():
if length > 0:
actual_patch_count +=1
return [("No tokens provided to highlight.", "Info")], actual_patch_count
patch_lengths_list = patch_lengths.tolist()
all_token_ids = tokens.tolist() # These are byte representations (integer IDs)
highlighted_data: List[Tuple[str, str]] = []
# Calculate original patch count (number of non-empty patches)
actual_patch_count = 0
for length in patch_lengths_list:
if length > 0:
actual_patch_count +=1
# Create a map from global token index to its patch label
token_to_patch_label = [""] * len(all_token_ids)
current_token_processed_for_patches = 0
patch_idx_counter = 0
for length in patch_lengths_list:
if length <= 0:
continue
patch_label = f"BL Patch {patch_idx_counter + 1}"
patch_idx_counter += 1
for _ in range(length):
if current_token_processed_for_patches < len(all_token_ids):
token_to_patch_label[current_token_processed_for_patches] = patch_label
current_token_processed_for_patches += 1
# Handle remainder tokens label
if current_token_processed_for_patches < len(all_token_ids):
remainder_label = "BL Remainder"
logging.warning(
f"Bytelatent patch lengths sum ({current_token_processed_for_patches}) "
f"is less than total tokens ({len(all_token_ids)}). "
f"Remainder tokens will be labelled '{remainder_label}'."
)
for k in range(current_token_processed_for_patches, len(all_token_ids)):
token_to_patch_label[k] = remainder_label
elif current_token_processed_for_patches > len(all_token_ids) and len(all_token_ids) > 0 :
logging.warning(
f"Bytelatent patch lengths sum ({current_token_processed_for_patches}) "
f"exceeds total tokens ({len(all_token_ids)}). "
f"Patch label mapping might be affected."
)
global_token_idx = 0
while global_token_idx < len(all_token_ids):
char_representation = ""
decoded_byte_ids: List[int] = []
# Handle the special case for token ID 1, often representing '<' or similar
# This assumes token ID 1 should always be treated as a single character '<'.
# Adjust if your tokenizer handles ID 1 differently or if it can be part of a multi-byte sequence.
if all_token_ids[global_token_idx] == 1:
char_representation = "<" # As per user's original code snippet's implication
decoded_byte_ids = [1]
else:
# Iteratively try to decode a character (1 to 4 bytes for UTF-8)
for length_to_try in range(1, 5):
if global_token_idx + length_to_try > len(all_token_ids):
break # Not enough tokens left for this length
current_ids_to_try = all_token_ids[global_token_idx : global_token_idx + length_to_try]
try:
temp_decode_text = self.tokenizer.decode(current_ids_to_try)
if temp_decode_text: # Successfully decoded something
# This means `current_ids_to_try` forms a valid character(s).
# We take the first successful decode, assuming it's the shortest complete char.
char_representation = temp_decode_text
decoded_byte_ids = current_ids_to_try
break # Found a character
except Exception as e:
# Decoding failed (e.g., incomplete sequence for this length_to_try).
# Log this if it's unexpected for a particular tokenizer.
# logging.debug(f"Decode attempt failed for {current_ids_to_try}: {e}")
pass # Continue to try with more bytes.
# After trying to decode:
if char_representation and decoded_byte_ids:
num_bytes_in_char = len(decoded_byte_ids)
# Ensure char_representation is treated as a single conceptual unit here.
# If tokenizer.decode can return multiple characters for a short byte sequence,
# this might need adjustment. For UTF-8, one char is expected.
processed_char_text = char_representation.splitlines()[0] # Take first char if multiple, or clean up
for j in range(num_bytes_in_char):
current_byte_abs_idx = global_token_idx + j
# Boundary check, though loop structure should prevent out-of-bounds
if current_byte_abs_idx < len(all_token_ids):
label = token_to_patch_label[current_byte_abs_idx] if current_byte_abs_idx < len(token_to_patch_label) else "Error: Label Missing"
display_text = f"{processed_char_text}-{j+1}".replace(" ", "_")
highlighted_data.append((display_text, label))
else: # Should ideally not be reached
logging.error(f"Critical: Token index {current_byte_abs_idx} out of bounds for labeling.")
global_token_idx += num_bytes_in_char
else:
# Fallback: Could not form a character starting at global_token_idx.
# Treat the current byte as a standalone problematic byte.
current_byte_abs_idx = global_token_idx
label = token_to_patch_label[current_byte_abs_idx] if current_byte_abs_idx < len(token_to_patch_label) else "Error: Label Missing"
problem_byte_id = all_token_ids[current_byte_abs_idx]
display_text = f"err_byte({problem_byte_id})-1"
# Attempt to get a direct representation if tokenizer can provide one for the single byte
try:
single_byte_char_attempt = self.tokenizer.decode([problem_byte_id])
if single_byte_char_attempt and single_byte_char_attempt != "\ufffd": # Replacement char
display_text = f"{single_byte_char_attempt}-1"
except Exception:
pass # Stick with the err_byte display_text
highlighted_data.append((display_text.replace(" ", "_"), label))
logging.warning(
f"Token ID {problem_byte_id} at index {current_byte_abs_idx} "
f"could not be part of a validly decoded character using iterative decode. Fallback: '{display_text}'."
)
global_token_idx += 1
return highlighted_data, actual_patch_count
def process(self, prompt: str, max_bytes: float) -> Tuple[Optional[matplotlib.figure.Figure], List[Tuple[str, str]], int, str]:
"""Processes the prompt using the loaded Bytelatent model."""
status = ""
if not self.is_available or self.tokenizer is None or self.patcher is None:
status = "Bytelatent processor not available."
return None, [("Bytelatent not available.", "Error")], 0, status
# Truncate prompt if necessary for this demo's model
prompt_bytes = prompt.encode('utf-8')
prompt_bl = prompt
if len(prompt_bytes) > max_bytes:
try:
# Find last full character within limit (simple space split fallback)
try:
prompt_bl = prompt_bytes[:max_bytes].decode('utf-8', errors='strict')
# If successful, find last space to avoid cutting mid-word visually
last_space = prompt_bl.rfind(' ')
if last_space != -1:
prompt_bl = prompt_bl[:last_space]
except UnicodeDecodeError:
# If strict fails, find last valid byte sequence start before max_bytes
i = max_bytes
while i > 0:
try:
prompt_bytes[:i].decode('utf-8', errors='strict')
break # Found valid end point
except UnicodeDecodeError:
i -= 1
prompt_bl = prompt_bytes[:i].decode('utf-8', errors='ignore') # Decode ignoring errors now
trunc_len = len(prompt_bl.encode('utf-8'))
status = f"Warning: Prompt truncated to {trunc_len} bytes for Bytelatent entropy model.\n"
logging.warning(status.strip())
except Exception as trunc_err:
# Fallback if complex truncation fails
prompt_bl = prompt_bytes[:max_bytes].decode('utf-8', errors='ignore')
trunc_len = len(prompt_bl.encode('utf-8'))
status = f"Warning: Prompt aggressively truncated to ~{trunc_len} bytes due to encoding issue. Error: {trunc_err}\n"
logging.warning(status.strip())
# Run Bytelatent patching
try:
logging.info(f"Running Bytelatent entropy model patching on {len(prompt_bl.encode('utf-8'))} bytes...")
results = patcher_nocache(
[prompt_bl],
tokenizer=self.tokenizer,
patcher=self.patcher,
max_prompt_len=512,
max_gen_len=256,
)
status += "Bytelatent patching executed.\n"
if not results:
logging.warning("Bytelatent entropy processing returned no results.")
status += "Warning: Bytelatent generated no patches."
return None, [("No patches generated by Bytelatent.", "Info")], 0, status
batch_patch_lengths, batch_scores, batch_tokens = results
patch_lengths, scores, tokens = batch_patch_lengths[0], batch_scores[0], batch_tokens[0]
# Create highlighted text data
_highlighted_data, patch_count = self._create_highlight_data(patch_lengths, tokens)
ind_highlighted_data = [(text.replace("-1", ""), label) for text, label in _highlighted_data]
grouped_data = defaultdict(str)
for text, label in ind_highlighted_data:
grouped_data[label] += text
highlighted_data = [(text, label) for label, text in grouped_data.items()]
# Create plot
fig = None
if plot_entropies is not None: # Check if plotting function is available
try:
# Use the potentially truncated prompt_bl for the plot text axis if full decode fails
decoded_output_for_plot = self.tokenizer.decode(tokens.tolist())
except Exception as decode_err:
logging.warning(f"Error decoding full BLT token sequence for plot: {decode_err}. Using (truncated) input prompt for plot axis.")
decoded_output_for_plot = prompt_bl
# fig = plot_entropies(patch_lengths, scores, decoded_output_for_plot, threshold=self.patcher.threshold)
fig = plot_entropies(
patch_lengths,
scores,
tokens,
chars=decoded_output_for_plot,
threshold=self.patcher.threshold
)
status += f"Bytelatent plot generated. Found {patch_count} patches.\n"
else:
status += "Plotting unavailable.\n"
logging.info(f"Bytelatent processing complete. Patches: {patch_count}")
return fig, highlighted_data, patch_count, status.strip()
except Exception as e:
logging.error(f"An error occurred during Bytelatent processing: {e}")
logging.error(traceback.format_exc())
status += f"Error during Bytelatent processing: {e}"
return None, [(f"Bytelatent Error: {e}", "Error")], 0, status.strip()
# --- Tokenizer Helpers ---
def create_tiktoken_highlight_data(prompt: str, encoding: tiktoken.Encoding) -> Tuple[List[Tuple[str, str]], int, str]:
"""Generates data for gr.HighlightedText based on tiktoken."""
status = "Processing with Tiktoken...\n"
try:
tiktoken_ids = encoding.encode(prompt)
highlighted_data = []
for i, token_id in enumerate(tiktoken_ids):
try:
token_text = encoding.decode([token_id])
except (UnicodeDecodeError, TypeError): # Handle bytes that don't form valid unicode
try:
token_bytes = encoding.decode_single_token_bytes(token_id)
token_text = f"[Bytes: {token_bytes.hex()}]"
except Exception: token_text = "[Decode Error]"
except Exception as e:
logging.warning(f"Unexpected tiktoken decode error for token ID {token_id}: {e}")
token_text = "[Decode Error]"
token_label = f"GPT4 Tk {i+1}"
highlighted_data.append((token_text, token_label))
token_count = len(tiktoken_ids)
status += f"Tiktoken processing successful ({token_count} tokens)."
logging.info(f"Tiktoken processing complete. Found {token_count} tokens.")
return highlighted_data, token_count, status.strip()
except Exception as e:
logging.error(f"Error during tiktoken processing: {e}")
logging.error(traceback.format_exc())
status += f"Error during Tiktoken processing: {e}"
return [(f"Error processing with tiktoken: {e}", "Error")], 0, status.strip()
def create_llama3_highlight_data(prompt: str, tokenizer: AutoTokenizer) -> Tuple[List[Tuple[str, str]], int, str]:
"""Generates data for gr.HighlightedText based on Llama 3 tokenizer."""
status = f"Processing with Llama 3 ({tokenizer.name_or_path})...\n"
try:
llama_token_ids = tokenizer.encode(prompt)
highlighted_data = []
for i, token_id in enumerate(llama_token_ids):
try:
# Decode individual token. Add special handling if needed for specific tokenizers.
token_text = tokenizer.decode([token_id])
except Exception as e:
logging.warning(f"Unexpected Llama 3 decode error for token ID {token_id}: {e}")
token_text = "[Decode Error]"
token_label = f"Llama3 Tk {i+1}"
highlighted_data.append((token_text, token_label))
token_count = len(llama_token_ids)
status += f"Llama 3 processing successful ({token_count} tokens)."
logging.info(f"Llama 3 processing complete. Found {token_count} tokens.")
return highlighted_data, token_count, status.strip()
except Exception as e:
logging.error(f"Error during Llama 3 processing: {e}")
logging.error(traceback.format_exc())
status += f"Error during Llama 3 processing: {e}"
return [(f"Error processing with Llama 3: {e}", "Error")], 0, status.strip()
# --- Global Initializations ---
# Initialize Bytelatent Processor (loads model if available)
blt_processor = BytelatentProcessor(Config.BLT_MODEL_NAME, Config.BLT_WEIGHTS_DIR)
# Load Tiktoken Encoding
try:
tiktoken_encoding = tiktoken.get_encoding(Config.TIKTOKEN_ENCODING_NAME)
logging.info(f"Tiktoken encoding '{Config.TIKTOKEN_ENCODING_NAME}' loaded.")
tiktoken_available = True
except Exception as e:
logging.error(f"Failed to load Tiktoken encoding '{Config.TIKTOKEN_ENCODING_NAME}': {e}")
tiktoken_encoding = None
tiktoken_available = False
# Load Llama 3 Tokenizer
try:
# Use trust_remote_code=True if required by the specific model revision
llama_tokenizer = AutoTokenizer.from_pretrained(Config.LLAMA3_MODEL_NAME) #, trust_remote_code=True)
logging.info(f"Llama 3 tokenizer '{Config.LLAMA3_MODEL_NAME}' loaded.")
llama_available = True
except ImportError:
logging.error("Transformers or SentencePiece library not found. Llama 3 functionality disabled. Install with: pip install transformers sentencepiece")
llama_tokenizer = None
llama_available = False
except OSError as e:
logging.error(f"Error loading Llama 3 tokenizer '{Config.LLAMA3_MODEL_NAME}': {e}")
error_msg = f"Could not load Llama 3 tokenizer '{Config.LLAMA3_MODEL_NAME}'. Check model name, network, and authentication (use `huggingface-cli login` if needed)."
logging.error(error_msg)
llama_tokenizer = None
llama_available = False
except Exception as e:
logging.error(f"An unexpected error occurred loading Llama 3 tokenizer: {e}")
logging.error(traceback.format_exc())
llama_tokenizer = None
llama_available = False
# --- Main Processing Function ---
@spaces.GPU
def process_text(prompt: str) -> Tuple[
Optional[matplotlib.figure.Figure], List[Tuple[str, str]], int, # BLT
List[Tuple[str, str]], int, # Tiktoken
List[Tuple[str, str]], int, # Llama 3
str # Status
]:
"""
Processes the input prompt using ByteLatent, Tiktoken, and Llama 3,
returning visualizations, counts, and status.
"""
status_messages = ["Processing started..."]
fig = None
bl_highlighted_data, bl_count = [("Bytelatent not available.", "Error")], 0
tk_highlighted_data, tk_count = [("Tiktoken not available.", "Error")], 0
llama_highlighted_data, llama_count = [("Llama 3 not available.", "Error")], 0
# 1. Bytelatent Processing
if blt_processor.is_available:
fig, bl_highlighted_data, bl_count, bl_status = blt_processor.process(prompt, Config.BLT_MAX_BYTES_FOR_DEMO)
status_messages.append(f"Bytelatent Status:\n{bl_status}")
else:
status_messages.append("Bytelatent Status: Skipped (processor unavailable).")
# 2. Tiktoken Processing
if tiktoken_available and tiktoken_encoding:
tk_highlighted_data, tk_count, tk_status = create_tiktoken_highlight_data(prompt, tiktoken_encoding)
status_messages.append(f"Tiktoken Status:\n{tk_status}")
else:
status_messages.append("Tiktoken Status: Skipped (tokenizer unavailable).")
# 3. Llama 3 Processing
if llama_available and llama_tokenizer:
llama_highlighted_data, llama_count, llama_status = create_llama3_highlight_data(prompt, llama_tokenizer)
status_messages.append(f"Llama 3 Status:\n{llama_status}")
else:
status_messages.append("Llama 3 Status: Skipped (tokenizer unavailable).")
final_status = "\n---\n".join(status_messages)
if fig is not None and matplotlib is not None:
try:
plt.close(fig) # Close the specific figure
logging.debug("Closed Matplotlib figure.")
except Exception as close_err:
logging.warning(f"Could not close Matplotlib figure: {close_err}")
return fig, bl_highlighted_data, bl_count, tk_highlighted_data, tk_count, llama_highlighted_data, llama_count, final_status
# --- Gradio Interface ---
def create_color_map(label_prefix: str, colors: List[str], max_segments: int) -> Dict[str, str]:
"""Generates a color map dictionary for Gradio HighlightedText."""
color_cycler = itertools.cycle(colors)
color_map = {f"{label_prefix} {i+1}": next(color_cycler) for i in range(max_segments)}
color_map.update({"Error": "#FF0000", "Info": "#808080", "BL Remainder": "#AAAAAA"}) # Common labels
return color_map
bytelatent_color_map = create_color_map("BL Patch", Config.VIZ_COLORS, Config.MAX_EXPECTED_SEGMENTS)
tiktoken_color_map = create_color_map("GPT4 Tk", Config.VIZ_COLORS, Config.MAX_EXPECTED_SEGMENTS)
llama3_color_map = create_color_map("Llama3 Tk", Config.VIZ_COLORS, Config.MAX_EXPECTED_SEGMENTS)
with gr.Blocks(theme=Config.GRADIO_THEME) as iface:
gr.Markdown(f"# {Config.GRADIO_TITLE}")
gr.Markdown(Config.GRADIO_DESC)
with gr.Row():
with gr.Column(scale=1): # Input Column
prompt_input = gr.Textbox(
label="Input Prompt",
value=Config.DEFAULT_PROMPT,
placeholder="Enter text here...",
# Max length is for UI input; Bytelatent truncation happens in backend
lines=5,
info=f"Note: Entropy-based Patcher processing is limited to {Config.BLT_MAX_BYTES_FOR_DEMO} bytes for this demo."
)
submit_button = gr.Button("Generate Visualizations", variant="primary")
status_output = gr.Textbox(label="Processing Status", interactive=False, lines=10) # More space for detailed status
with gr.Column(scale=2): # Output Column
# --- Bytelatent Output Area ---
if blt_processor.is_available: # Only show BLT section if it loaded
with gr.Accordion("BLT Entropy Patcher Output (`blt_main_entropy_100m_512w`)", open=True):
with gr.Row():
bl_count_output = gr.Number(label="Patch Count", value=0, interactive=False, step=1, scale=0)
highlighted_output_bl = gr.HighlightedText(
label="BLT Patches",
color_map=bytelatent_color_map,
show_legend=False,
show_inline_category=False,
container=False
)
plot_output = gr.Plot(label="Entropy vs. Token Index")
else:
gr.Markdown(f"### Bytelatent Output (`{Config.BLT_MODEL_NAME}`)")
gr.Markdown("_(Bytelatent processor failed to load or libraries are missing. Output unavailable.)_")
# Define dummy outputs if BLT is unavailable so the `outputs` list doesn't break
highlighted_output_bl = gr.HighlightedText(value=[("BLT Unavailable", "Error")], label="BLT Patches", visible=False)
bl_count_output = gr.Number(value=0, label="Patch Count", visible=False)
plot_output = gr.Plot(label="Entropy Plot", visible=False)
# --- Tiktoken Output Area ---
if tiktoken_available: # Only show Tiktoken section if it loaded
with gr.Accordion(f"Tiktoken Output (`{Config.TIKTOKEN_ENCODING_NAME}`)", open=True):
with gr.Row():
tk_count_output = gr.Number(label="Token Count", value=0, interactive=False, step=1, scale=0)
highlighted_output_tk = gr.HighlightedText(
label="Tiktoken Segments",
color_map=tiktoken_color_map,
show_legend=False,
show_inline_category=False,
container=False
)
else:
gr.Markdown(f"### Tiktoken Output (`{Config.TIKTOKEN_ENCODING_NAME}`)")
gr.Markdown("_(Tiktoken failed to load. Output unavailable.)_")
highlighted_output_tk = gr.HighlightedText(value=[("Tiktoken Unavailable", "Error")], label="Tiktoken Segments", visible=False)
tk_count_output = gr.Number(value=0, label="Token Count", visible=False)
# --- Llama 3 Output Area ---
if llama_available: # Only show Llama section if it loaded
with gr.Accordion(f"Llama 3 Output (`{Config.LLAMA3_MODEL_NAME}`)", open=True):
with gr.Row():
llama_count_output = gr.Number(label="Token Count", value=0, interactive=False, step=1, scale=0)
highlighted_output_llama = gr.HighlightedText(
label="Llama 3 Segments",
color_map=llama3_color_map,
show_legend=False,
show_inline_category=False,
container=False
)
else:
gr.Markdown(f"### Llama 3 Output (`{Config.LLAMA3_MODEL_NAME}`)")
gr.Markdown("_(Llama 3 tokenizer failed to load. Output unavailable.)_")
highlighted_output_llama = gr.HighlightedText(value=[("Llama 3 Unavailable", "Error")], label="Llama 3 Segments", visible=False)
llama_count_output = gr.Number(value=0, label="Token Count", visible=False)
# Define the action for the button click
submit_button.click(
fn=process_text,
inputs=prompt_input,
# Ensure order matches the return values of process_text
outputs=[
# Bytelatent outputs (even if dummy/hidden)
plot_output,
highlighted_output_bl,
bl_count_output,
# Tiktoken outputs (even if dummy/hidden)
highlighted_output_tk,
tk_count_output,
# Llama 3 outputs (even if dummy/hidden)
highlighted_output_llama,
llama_count_output,
# Status output
status_output
]
)
# --- Launch the Gradio App ---
if __name__ == "__main__":
logging.info("-----------------------------------------")
logging.info("Starting Gradio App...")
logging.info(f"Bytelatent Available: {blt_processor.is_available}")
logging.info(f"Tiktoken Available: {tiktoken_available}")
logging.info(f"Llama 3 Tokenizer Available: {llama_available}")
logging.info("-----------------------------------------")
iface.launch()