Spaces:
Running
on
Zero
Running
on
Zero
import os | |
import gradio as gr | |
import torch | |
import itertools # For color cycling | |
import tiktoken # For GPT-4 tokenizer | |
from transformers import AutoTokenizer, AutoModel # For Llama3 tokenizer | |
# Bytelatent imports (assuming they are in the python path) | |
from bytelatent.data.file_util import get_fs | |
from bytelatent.generate_patcher import patcher_nocache | |
from bytelatent.tokenizers.blt_tokenizer import BltTokenizer | |
from bytelatent.plotting.entropy_figure_via_matplot_lib import plot_entropies | |
from bytelatent.args import TrainArgs | |
from download_blt_weights import main as ensure_present | |
# --- Global Setup --- | |
# Define colors for patches/tokens | |
VIZ_COLORS = [ | |
"#a6cee3", "#1f78b4", "#b2df8a", "#33a02c", "#fb9a99", "#e31a1c", | |
"#fdbf6f", "#ff7f00", "#cab2d6", "#6a3d9a", "#ffff99", "#b15928" | |
] # Add more if you expect many segments | |
LLAMA3_MODEL_NAME = "meta-llama/Meta-Llama-3-8B" # Or choose another variant like Instruct | |
# --- Helper Functions --- | |
def create_bytelatent_highlight_data(tokenizer, patch_lengths_tensor, tokens_tensor, colors): | |
"""Generates data for gr.HighlightedText based on bytelatent patches.""" | |
# (Keep the function from the previous version - no changes needed) | |
if patch_lengths_tensor is None or tokens_tensor is None or patch_lengths_tensor.numel() == 0: | |
return None | |
patch_lengths = patch_lengths_tensor.tolist() | |
all_tokens = tokens_tensor.tolist() | |
highlighted_data = [] | |
current_token_index = 0 | |
color_cycler = itertools.cycle(colors) | |
for i, length in enumerate(patch_lengths): | |
if length <= 0: continue | |
patch_token_ids = all_tokens[current_token_index : current_token_index + length] | |
if not patch_token_ids: continue | |
try: patch_text = tokenizer.decode(patch_token_ids) | |
except Exception as decode_err: | |
print(f"Warning: Bytelatent patch decoding failed: {decode_err}") | |
patch_text = f"[Decode Error: {len(patch_token_ids)} tokens]" | |
patch_label = f"BL Patch {i+1}" | |
highlighted_data.append((patch_text, patch_label)) | |
current_token_index += length | |
if current_token_index != len(all_tokens): | |
print(f"Warning: Bytelatent token mismatch. Consumed {current_token_index}, total {len(all_tokens)}") | |
remaining_tokens = all_tokens[current_token_index:] | |
if remaining_tokens: | |
try: remaining_text = tokenizer.decode(remaining_tokens) | |
except Exception: remaining_text = f"[Decode Error: {len(remaining_tokens)} remaining tokens]" | |
highlighted_data.append((remaining_text, "BL Remainder")) | |
return highlighted_data | |
def create_tiktoken_highlight_data(prompt, colors): | |
"""Generates data for gr.HighlightedText based on tiktoken (gpt-4) tokens.""" | |
# (Keep the function from the previous version - no changes needed) | |
try: | |
enc = tiktoken.get_encoding("cl100k_base") | |
tiktoken_ids = enc.encode(prompt) | |
highlighted_data = [] | |
color_cycler = itertools.cycle(colors) | |
for i, token_id in enumerate(tiktoken_ids): | |
try: token_text = enc.decode([token_id]) | |
except UnicodeDecodeError: | |
try: | |
token_bytes = enc.decode_single_token_bytes(token_id) | |
token_text = f"[Bytes: {token_bytes.hex()}]" | |
except Exception: token_text = "[Decode Error]" | |
except Exception as e: | |
print(f"Unexpected tiktoken decode error: {e}") | |
token_text = "[Decode Error]" | |
token_label = f"GPT4 Tk {i+1}" | |
highlighted_data.append((token_text, token_label)) | |
print(f"Tiktoken processing complete. Found {len(tiktoken_ids)} tokens.") | |
return highlighted_data | |
except ImportError: | |
print("Error: tiktoken library not found. Please install it: pip install tiktoken") | |
return [("tiktoken library not installed.", "Error")] | |
except Exception as tiktoken_err: | |
print(f"Error during tiktoken processing: {tiktoken_err}") | |
return [(f"Error processing with tiktoken: {str(tiktoken_err)}", "Error")] | |
def create_llama3_highlight_data(prompt, colors, model_name=LLAMA3_MODEL_NAME): | |
"""Generates data for gr.HighlightedText based on Llama 3 tokenizer.""" | |
try: | |
# Load Llama 3 tokenizer from Hugging Face Hub | |
# This might download the tokenizer files on the first run | |
# May require `huggingface-cli login` if model is private or gated | |
print(f"Loading Llama 3 tokenizer: {model_name}") | |
tokenizer = AutoTokenizer.from_pretrained(model_name) | |
print("Llama 3 tokenizer loaded.") | |
# Encode the prompt | |
llama_token_ids = tokenizer.encode(prompt) | |
highlighted_data = [] | |
color_cycler = itertools.cycle(colors) | |
for i, token_id in enumerate(llama_token_ids): | |
try: | |
# Decode individual token. Llama/SentencePiece tokenizers usually handle this well. | |
token_text = tokenizer.decode([token_id]) | |
# Special case: Handle potential leading space added by sentencepiece during decode | |
# if token_text.startswith(' '): # Check if this improves visualization | |
# token_text = token_text[1:] # Remove leading space visual artifact? Test this. | |
except Exception as e: | |
print(f"Unexpected Llama 3 decode error for token {token_id}: {e}") | |
token_text = "[Decode Error]" | |
token_label = f"Llama3 Tk {i+1}" # Clearer label prefix | |
highlighted_data.append((token_text, token_label)) | |
print(f"Llama 3 processing complete. Found {len(llama_token_ids)} tokens.") | |
return highlighted_data | |
except ImportError: | |
print("Error: transformers or sentencepiece library not found. Please install them: pip install transformers sentencepiece") | |
return [("transformers/sentencepiece library not installed.", "Error")] | |
except OSError as e: | |
# Handle errors like model not found, network issues, authentication needed | |
print(f"Error loading Llama 3 tokenizer '{model_name}': {e}") | |
if "authentication" in str(e).lower(): | |
return [(f"Authentication required for Llama 3 tokenizer '{model_name}'. Use `huggingface-cli login`.", "Error")] | |
else: | |
return [(f"Could not load Llama 3 tokenizer '{model_name}'. Check model name and network. Error: {e}", "Error")] | |
except Exception as llama_err: | |
print(f"Error during Llama 3 processing: {llama_err}") | |
import traceback | |
traceback.print_exc() # Print full traceback for debugging | |
return [(f"Error processing with Llama 3: {str(llama_err)}", "Error")] | |
# --- Main Processing Function --- | |
def process_text(prompt: str, model_name: str = "blt-1b"): | |
""" | |
Processes the input prompt using ByteLatent, Tiktoken, and Llama 3, | |
returning visualizations and status. | |
Args: | |
prompt: The input text string from the Gradio interface. | |
model_name: The name of the bytelatent model to use. | |
Returns: | |
A tuple containing: | |
- Matplotlib Figure for the entropy plot (or None). | |
- List of tuples for bytelatent gr.HighlightedText (or None). | |
- List of tuples for tiktoken gr.HighlightedText (or None). | |
- List of tuples for Llama 3 gr.HighlightedText (or None). | |
- Status/Error message string. | |
""" | |
fig = None | |
bl_highlighted_data = None | |
tk_highlighted_data = None | |
llama_highlighted_data = None | |
status_message = "Starting processing..." | |
# --- 1. Tiktoken Processing (Independent) --- | |
status_message += "\nProcessing with Tiktoken (gpt-4)..." | |
tk_highlighted_data = create_tiktoken_highlight_data(prompt, VIZ_COLORS) | |
if tk_highlighted_data and tk_highlighted_data[0][1] == "Error": | |
status_message += f"\nTiktoken Error: {tk_highlighted_data[0][0]}" | |
else: | |
status_message += "\nTiktoken processing successful." | |
# --- 2. Llama 3 Processing (Independent) --- | |
status_message += "\nProcessing with Llama 3 tokenizer..." | |
llama_highlighted_data = create_llama3_highlight_data(prompt, VIZ_COLORS) | |
if llama_highlighted_data and llama_highlighted_data[0][1] == "Error": | |
status_message += f"\nLlama 3 Error: {llama_highlighted_data[0][0]}" | |
else: | |
status_message += "\nLlama 3 processing successful." | |
# --- 3. Bytelatent Processing --- | |
try: | |
status_message += f"\nLoading entropy model for '{model_name}'..." | |
# (Bytelatent loading code remains the same as previous version) | |
consolidated_path = os.path.join("hf-weights", model_name) | |
train_args_path = os.path.join(consolidated_path, "params.json") | |
if not os.path.exists(train_args_path): raise FileNotFoundError(f"Bytelatent training args not found at {train_args_path}.") | |
fs = get_fs(train_args_path); train_args = TrainArgs.model_validate_json(fs.read_text(train_args_path)) | |
bl_tokenizer = train_args.data.tokenizer_args.build(); assert isinstance(bl_tokenizer, BltTokenizer) | |
patcher_args = train_args.data.patcher_args.model_copy(deep=True); patcher_args.realtime_patching = True | |
device = "cuda" if torch.cuda.is_available() else "cpu"; print(f"Using Bytelatent device: {device}") | |
patcher_args.patching_device = device; patcher_args.device = device | |
entropy_model_dir = os.path.join(consolidated_path, "entropy_model") | |
if not os.path.exists(entropy_model_dir): raise FileNotFoundError(f"Bytelatent entropy model directory not found at {entropy_model_dir}.") | |
patcher_args.entropy_model_checkpoint_dir = entropy_model_dir; bl_patcher = patcher_args.build() | |
status_message += "\nBytelatent model loaded." | |
# --- Processing --- | |
status_message += "\nRunning Bytelatent patching..." | |
print(f"Processing prompt with Bytelatent: '{prompt}'") | |
# Limit prompt length for bytelatent if necessary | |
prompt_bytes = prompt.encode('utf-8') | |
if len(prompt_bytes) > 512: | |
print(f"Warning: Prompt exceeds 512 bytes ({len(prompt_bytes)}). Truncating for Bytelatent.") | |
prompt_bl = prompt_bytes[:512].decode('utf-8', errors='ignore') | |
status_message += "\nWarning: Prompt truncated to 512 bytes for Bytelatent." | |
else: | |
prompt_bl = prompt | |
results = patcher_nocache([prompt_bl], tokenizer=bl_tokenizer, patcher=bl_patcher) | |
if not results: | |
print("Bytelatent processing returned no results.") | |
status_message += "\nBytelatent Warning: Processing completed, but no results were generated." | |
else: | |
batch_patch_lengths, batch_scores, batch_tokens = results | |
patch_lengths, scores, tokens = batch_patch_lengths[0], batch_scores[0], batch_tokens[0] | |
# --- Visualization Data Generation --- | |
try: decoded_output_for_plot = bl_tokenizer.decode(tokens.tolist()) | |
except Exception as decode_err: | |
print(f"Warning: Error decoding full sequence for plot: {decode_err}") | |
decoded_output_for_plot = prompt_bl # Use truncated prompt for plot if decode fails | |
fig = plot_entropies(patch_lengths, scores, decoded_output_for_plot, threshold=bl_patcher.threshold) | |
bl_highlighted_data = create_bytelatent_highlight_data(bl_tokenizer, patch_lengths, tokens, VIZ_COLORS) | |
status_message += "\nBytelatent processing and visualization successful." | |
print("Bytelatent processing and decoding complete.") | |
except FileNotFoundError as e: | |
print(f"Bytelatent Error: {e}") | |
status_message += f"\nBytelatent FileNotFoundError: {str(e)}" | |
except Exception as e: | |
print(f"An unexpected Bytelatent error occurred: {e}") | |
import traceback | |
traceback.print_exc() | |
status_message += f"\nBytelatent Unexpected Error: {str(e)}" | |
# Return all generated data and the final status message | |
return fig, bl_highlighted_data, tk_highlighted_data, llama_highlighted_data, status_message | |
# --- Gradio Interface --- | |
# Create color maps for HighlightedText dynamically | |
MAX_EXPECTED_SEGMENTS = 1000 # Increase max expected segments further | |
common_error_map = {"Error": "#FF0000"} # Red for errors | |
bytelatent_color_map = {f"BL Patch {i+1}": color for i, color in zip(range(MAX_EXPECTED_SEGMENTS), itertools.cycle(VIZ_COLORS))} | |
bytelatent_color_map["BL Remainder"] = "#808080"; bytelatent_color_map.update(common_error_map) | |
tiktoken_color_map = {f"GPT4 Tk {i+1}": color for i, color in zip(range(MAX_EXPECTED_SEGMENTS), itertools.cycle(VIZ_COLORS))} | |
tiktoken_color_map.update(common_error_map) | |
llama3_color_map = {f"Llama3 Tk {i+1}": color for i, color in zip(range(MAX_EXPECTED_SEGMENTS), itertools.cycle(VIZ_COLORS))} | |
llama3_color_map.update(common_error_map) | |
with gr.Blocks(theme=gr.themes.Soft()) as iface: | |
gr.Markdown("# BLT's Entropy Patcher Visualisation") # Updated Title | |
gr.Markdown( | |
"Enter text to visualize its segmentation according to different tokenizers:\n" | |
"1. **BLT:** Entropy plot and text segmented by dynamic patches (Input limited to 512 bytes).\n" | |
"2. **Tiktoken (GPT-4):** Text segmented by `cl100k_base` tokens.\n" | |
"3. **Llama 3:** Text segmented by the `meta-llama/Meta-Llama-3-8B` tokenizer." | |
) | |
with gr.Row(): | |
with gr.Column(scale=1): # Input Column | |
prompt_input = gr.Textbox( | |
label="Input Prompt", | |
value="Daenerys Targaryen is in Game of Thrones, a fantasy epic by George R.R. Martin.", | |
placeholder="Enter text here...", | |
max_length=2048, # Allow even longer input, Bytelatent will truncate | |
lines=5, | |
info="Processing is limited to the first 512 bytes of the input." | |
) | |
submit_button = gr.Button("Generate Visualizations", variant="primary") | |
status_output = gr.Textbox(label="Processing Status", interactive=False, lines=5) | |
with gr.Column(scale=2): # Output Column | |
gr.Markdown("### BLT's Entropy Patcher Output (`100m`)") | |
highlighted_output_bl = gr.HighlightedText( | |
label="Bytelatent Patched Text", | |
color_map=bytelatent_color_map, | |
show_legend=False, # Legend can get very long, disable for compactness | |
show_inline_category=False, | |
) | |
plot_output = gr.Plot(label="Bytelatent Entropy vs. Token Index") | |
gr.Markdown("### Tiktoken Output (`cl100k_base` for GPT-4)") | |
highlighted_output_tk = gr.HighlightedText( | |
label="Tiktoken Segmented Text", | |
color_map=tiktoken_color_map, | |
show_legend=False, | |
show_inline_category=False, | |
) | |
gr.Markdown(f"### Llama 3 Output (`{LLAMA3_MODEL_NAME}`)") | |
highlighted_output_llama = gr.HighlightedText( | |
label="Llama 3 Segmented Text", | |
color_map=llama3_color_map, | |
show_legend=False, | |
show_inline_category=False, | |
) | |
# Define the action for the button click | |
submit_button.click( | |
fn=process_text, | |
inputs=prompt_input, | |
# Ensure order matches the 5 return values of process_text | |
outputs=[ | |
plot_output, | |
highlighted_output_bl, | |
highlighted_output_tk, | |
highlighted_output_llama, | |
status_output | |
] | |
) | |
# --- Launch the Gradio App --- | |
if __name__ == "__main__": | |
print("Please ensure 'tiktoken', 'transformers', and 'sentencepiece' are installed (`pip install tiktoken transformers sentencepiece`)") | |
print(f"Attempting to use Llama 3 Tokenizer: {LLAMA3_MODEL_NAME}. Ensure you have access (e.g., via `huggingface-cli login` if needed).") | |
ensure_present(["blt-1b"]) # Ensure bytelatent model is present | |
iface.launch() | |